Yıldız Teknik Üniversitesi

Tıp kategorisine 12 Temmuz, 2007 tarihinde eklendi, 14 defa okundu

YILDIZ TEKNİK ÜNİVERSİTESİ

ELEKTRİK-ELEKTRONİK FAKÜLTESİ

ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ

PROJE 1

LAZERLER, TIPTA VE ÖZELLİKLE GÖZ TEDAVİSİNDEKİ UYGULAMALARI

Hazırlayan : Sinem ÇELİK

9512021

3/C

Sunulan : Prof. Dr. Halit PASTACI

Haziran, 1998

İÇİNDEKİLER

I. GİRİŞ

I.1. LAZERİN İLKELERİ

I.1.A. ORTAM

I.1.B. İKİ AYNA

I.2. DİĞERLERİNE BENZEMEYEN BİR IŞIK

I.2.A. PARALEL BİR DEMET

I.2.B. BAĞDAŞIK BİR DEMET

I.3. PROJEKTÖR, METRE, TEL, NEŞTER, HAMLADž

I.3.A. ÖLÇÜMLER VE KONTROLLER

I.3.B. HABERLEŞMELER

I.3.C. ISITMA

I.4. HOLOGRAFİ

I.4.A. İLKE

I.4.B. NEDEN LAZER ?

I.4.C. DİĞER LAZERLER

II. TEMEL İLKELER

III. LAZER ÇEŞİTLERİ

OPTİK POMPALAMALI KATI LAZERLER

SIVI LAZERLER

BOYARMADDE LAZERLERİ

GAZ LAZERLERİ

DİNAMİK GAZ LAZERLERİ

KİMYASAL LAZERLER

YARI – İLETKEN LAZERLER

LAZERİN YÜKSELTEÇ ve OSİLATÖR OLARAK KULLANILMASI

KISA GÜÇLÜ DARBELER ÜRETEN LAZERLER

AYARLANABİLİR LAZERLER

KATI LAZERLERİ

GAZ LAZERLERİ

SERBEST ELEKTRONLU LAZERLER

IV. LAZERİN UYGULAMA ALANLARI

IV.1. GÜVENLİK

IV.2. LAZERİN TIPTAKİ UYGULAMALARI

IV.3. LAZERİN ASKERİ UYGULAMALARI

V. LAZERİN TIPTAKİ UYGULAMALARI

V.1. FOTOKOAGULASYONUN PRENSİPLERİ

V.2. LAZER UYGULAMASININ TEDAVİ ÖNCESİ

HAZIRLIĞI ve TEKNİĞİ

V.3. PRATİK TAVSİYELER

V.4. LAZER FOTOKOAGULASYONUNUN

KOMPLİKASYONLARI ve LİMİTLERİ

V.5. LAZER FOTOKOAGULASYONLARININ

PRENSİPLERİ ve TEKNİKLERİ

V.6. DİĞER VASKULAR LEZYONLAR

V.7. MAKULAR HASTALIK MERKEZİ SERUS

RETİNOPATİSİ VE ALT-RETİNAL YENİ

DAMARLAR

V.8. RETİNAL YIRTIKLAR

V.9. GLAUKOMANIN, ÖN PARÇANIN VE GÖZDEKİ

TÜMÖRÜN TEDAVİSİ

VI. OFTALMOLOJİDE KONTAK LAZER UYGULAMALARI

I. GİRİŞ

Lazerler, 20. yüzyılın ikinci yarısındaki en büyük icatlar listesinde zirveye yakın bir yerde yer almaktadır. Uydu, bilgisayar ve entegre devre ile birlikte yüksek teknolojinin sembolüdür.

Müzikhollerden Apollo projesine, kompakt disk okuyucularından göz cerrahisine kadar, “yıldız savaşları”’nı da içine alarak lazer hiç kuşkusuz modern fiziğin en yaygın teknik uygulamalarından biri olmuştur. Işığın saflığı ve kullanım alanlarının esnekliği, hemen maddeyle enerji hakkında bilgilerin tümünden yararlanan bilgileri içerir. Bunun en önemli kanıtı, 1966’da nobel ödülü kazanan Fransız fizikçi A. Kastler’in lazerin doğuşunda belirleyici bir rol oynayacak olan “optik pompalama” çalışmasıdır.

Lazer zaten “Microwave Amplification by Stimulated Emission of Radiation”’ın yani “uyarılmış ışınım yayımıyla mikrodalga yükseltilmesi” kısaltması olan “maser”’in oğludur, çünkü uyarılmış yayım uygulamaları, ışık alanından önce mikrodalga alanında ortaya çıkmıştır: maser 1954’te doğmuş ve ancak 1960’ta Amerikalı Maiman ilk yakutlu lazeri gerçekleştirmiştir.

Ama uyarılmış yayımın ilkesi oldukça eskiye dayanır: 1917’den itibaren Einstein, kendiliğinden yayım ve soğurmanın ötesinde, maddeyle ışık arasındaki etkileşimin bu üçüncü ürünün kuramsal gerekliliğini ortaya koymuştu. Ayrıca, bu durumda yayımlanan ışığın uyarıcı ışıkla bağlantılı, uyumlu olması gerekeceğini, böylece bunun etkin bir şekilde büyütüleceğini göstermişti. Ama, bütün klasik ışık kaynaklarında uyarılmış yayım, kendiliğinden yayıma göre çok küçüktür. Bunun baskın olabilmesi için, hem çok daha fazla uyarıcı bağdaşık ışık, hem de yayım yapabilecek durumda, yani yüksek bir enerji durumunda bulunan çok sayıda atom gereklidir. İşte, “optik pompalama” nın belirleyici rolü buradadır ve bu üst enerji durumlarındaki atom topluluğunun sayısını arttırır.

Buradan anlaşıldığı gibi lazerin işleyişi pek kolay değildir. Ancak, bu işleyiş üzerinde daha derinlere inmeden sonucu değerlendirilebilir, yani lazerden yayımlanan ışığın tüm diğer ışıklara göre farkının ne olduğunu sorabiliriz. Zaten içimizden pek azı bir lazer yapabilir, ama hepimiz lazerin yayımladığı ışığın ilgi çekici özelliklerinden faydalanmaktan uzak kalmıyoruz.

I.1. LAZERİN İLKESİ

LAZERİN İŞLEYİŞİ, UYGUN ŞEKİLDE UYARILMIŞ BİR ORTAMIN ATOMLARININ YAYIMLADIĞI UYARILMIŞ IŞIĞA DAYANIR.

Herhangi bir ortamda, belirli bir elementin atomları, molekülleri veya iyonları birçok enerji düzeyi gösterir ve bu enerji düzeyleri arasında gidip gelirken, enerjileri iki düzey arasındaki farka eşit olan fotonlar yayımlar veya soğurur. Belirli bir frekansta bir foton yayımlamaya yatkın yüksek enerjili bir atom, tam olarak aynı frekansta bir ışıkla foton vermeye “teşvik edilebilir” ve yayımlanan ışık uyarıcı ışıkla bağdaşık (“senkronize”) olur.

I.1.A. ORTAM

Bununla birlikte, dengede bulunan bir ortamda alt enerji düzeyleri üst enerji düzeylerine göre daha kalabalıktır ve soğurma, uyarılmış yayıma önemli ölçüde baskındır. İşte bu yüzdendir ki bu olay, Einstein tarafından tanımlanmasından (1917) 1960’a kadar kullanılamadı; o yıl, üst enerji düzeylerinde çoğunlukta bir atom topluluğu bulunduran denge dışı ortamları gerçekleştirmek mümkün oldu.

Kullanılan ilk ortam, içinde az miktarda krom oksit bulunduran (yüzde 0.05) alümin kristalinden ibaret yakuttur. Bu krom iyonları yeşil ve maviyi kolaylıkla soğurur (yakutun kırmızı rengi buradan kaynaklanır) ve bu iyonlar yoğun ve parıltılı bir beyaz ışıkla aydınlatılırsa üst düzeylere geçebilir; bu düzeyden geri inerken 694.3 nanometrelik (metrenin milyarda biri) dalga boyuna sahip kırmızı bir ışık yayımlar. Bu ışıktan yeterli boyutta kullanma imkanı olursa, bu yayım uyarılabilir.

I.1.B. İKİ AYNA

Her iki tabanı paralel ve iyice parlatılmış yakuttan bir silindir yapılırsa, bu şekilde oluşmuş olan iki ayna yönü kendilerine dik olan ışığı silindir içine hapseder. Üstelik bunlar arasındaki uzaklık uygunsa, belirli bir dalga boyuna denk gelen ışık bağdaşık olur: bu “rezonans yapan çukurluğun” uçlarındaki ardışık yansımalardan sonra bütün dalgalar senkronize olur. Bunun sonunda silindirin ekseni boyunca yönlendirilmiş bir ışıkla kat edilen ortamdan bağdaşık ve monokromatik (tek renkli) bir ışık çıkar. Nihayet, bu ışığın frekansı ortamda uyarılmış yayımın frekansına denk gelirse, uyarılmış yayım yeterince büyüdükten sonra dışarıya alınabilir-ancak kısmen sır sürülmüş uç yüzeylerden birini delerek-. Böylece paralel, bağdaşık, monokromatik bir demet, kısası bir lazer demeti elde edilir.

I.2. DİĞERLERİNE BENZEMEYEN BİR IŞIK

LAZER DEMETİ, KLASİK KAYNAKLARDAN YAYIMLANAN IŞIKLARDAN BİRÇOK BAKIMDAN FARKLIDIR. ÇOK MONOKROMATİK, ÇOK PARALEL VE BAĞDAŞIKTIR.

Lazerin yayımladığı ışığın belirli bir dalga boyu vardır ve buna ait güç kilovatla ölçülür. Bu kesinlik kısmen, kullanılan yayımlayıcı enerji düzeyinin darlığına ve daha çok iki aynanın oluşturduğu rezonans boşluğunun oynadığı seçici role bağlıdır. İki ayna arasındaki uzaklık yayımlanan ışığın dalga boyunu belirlediğinden, dalga boyunu hafifçe değiştirmek için bu uzaklık değiştirilebilir (sıcaklık veya magnetik alan değişikliği ile).

I.2.A. PARALEL BİR DEMET

Gene aynaların varlığıdır ki, lazer demetine olağanüstü paralelliğini kazandırır: demeti oluşturan ışık iki ayna arasında birçok defa gidip gelmiştir ve eğer bunların doğrultuları tam anlamıyla dik olmasaydı, ışık boşluğun kenarlarından çıkmış olurdu.

Klasik bir ışık kaynağıyla ancak, odaklaştırıcı elemanları olan veya olmayan diyaframlar yardımıyla paralel bir ışık demeti oluşturulabilir: bu arada kırınım, elde edilen demeti genişletir. Aynı kırınım lazer demetini de genişletir, ama lazer demeti “doğuştan paraleldir” ve deliğin bütün genişliği boyunca çıkar: kırınımdan kaynaklan yelpaze şeklinde açılma yay dakikasının altında kalır.

I.2.B. BAĞDAŞIK BİR DEMET

Lazer demeti içine ince ve paralel iki yarık açılmış bir ekran yerleştirilirse girişim saçakları elde edilir, bu da iki yarıktan geçen ışıkların sabit bir faz farkı olduğunu gösterir. İki yarık klasik bir ışık kaynağıyla aydınlatılırsa girişim görülmez: kaynağın atomları kısa ışık darbeleri yayımlamakta, bunların faz farkları her an rasgele ve aralıksız değişmektedir. Böyle bir klasik kaynakla saçaklar elde etmek için iki yarığın, her atom yayımını “ikiye bölecek” şekilde bir başka yarıkla aydınlatılması gerekir.

Diğer iki niteliğinin yanı sıra daha az belirgin olan lazer demetinin bağdaşıklığı teknolojik uygulamalar bakımından oldukça zengindir: bunun sayesinde holografi gelişmiş ve lazerin metroloji ve optik lifler aracılığıyla iletimde kullanılması imkanı ortaya çıkmıştır.

I.3. PROJEKTÖR, METRE, TEL, NEŞTER, HAMLADž

KOMPAKT DİKLERİN OKUNMASINDAN GÖZ CERRAHİSİNE VE ORADAN DÜNYA-AY UZAKLIĞININ ÖLÇÜLMESİNE KADAR, LAZERİN UYGULAMALARI ÜÇ ÖZELLİĞE DAYANIR.

Holografi, laboratuarlardaki bazı çok “sivri” uygulamalar-mesela spektroskopi (tayfgözlem) için uygulama- ve “lazer-show”lardaki estetik gösteriler bir kenara bırakılırsa, lazer uygulamaları üç kategoride toplanabilir: ölçümler, haberleşme ve ısıtma.

I.3.A. ÖLÇÜMLER VE KONTROLLER

Lazer demeti hem çok uzun mesafelerin ölçülmesini ve hem de karşılaştırmalı ölçümlerin çok büyük bir hassasiyet ve kesinlikle yapılmasını sağlar. Önce, paralelliği ve pek az dağılma göstermesiyle uzun mesafelerde algılanabilen bir enerji verir. Daha sonra iyice monokromatik ve önemli bir güce sahip olan ışığı onu, gerek girişimölçer ölçümlerinde, gerek Doppler etkili çizgisel hızların ölçümünde ideal bir kaynak durumuna getirir. Böylece lazer çok geniş bir ölçüm yelpazesi içinde uygulama alanları bulur: uydulardan Dünya kabuğundaki zayıf hareketlerin gözlemlenmesi, duyarlı aletlerin yönlendirilmesi veya kompakt disklerin okunması gibi…

Nihayet, zanaat alanında da lazer demeti “ışık ışını”nı maddeleştirmektedir: böylece, bugüne kadar görülmemiş bir kolaylıkla en ince optik ayarlamalar, mesela büyük spektrografların (tayfçeker) optik ayarlamaları gerçekleştirilebilmektedir.

I.3.B. HABERLEŞMELER

Bir vericinin iletilebileceği bilgi hacmi” bant gemiliğine”, yani bilgiyi taşıyan kipleme için kullanılabilir frekans yelpazesine bağlıdır. Oysa, kipleme frekansı “taşıyıcı” denen kiplenmiş dalganın frekansından büyük ölçüde daha düşüktür (genellikle 10 mislinden daha fazla); ve ihtiyaçların çok büyük ölçüde artması gitgide daha yüksek frekansların, 1000 megahertz’e kadar frekansların kullanılmasını gerektirmektedir.

Ne var ki, görünür ışık 400 milyon megahertzlik bir yelpazeyi içine almaktadır. Pek tabii bunu yeterli bir enerjiyle, bağdaşık bir şekilde üretebilirsek, imkanların ne kadar çoğalabileceğini tahmin edebiliriz. İşte lazerin tam olarak yaptığı budur. Gerek serbest demetlerle (mesela Dünya ile bir uydu arasında), gerek yönlendirilmiş demetlerle (optik liflerde) hiç kuşkusuz gelecek lazerle şıklı haberleşmenin olacaktır. Optikelektronikte kullanılan düzenekler güç lazerlerinden farklıdır: burada boyları birkaç milimetre olan yarı iletkenli lazerler kullanılır.

I.3.C. ISITMA

Lazer demeti çok büyük bir hassasiyetle kilovatlarca enerjiyi bir noktaya odaklamaya da yarar. Şu halde boyutları çok küçültülmüş bir alanı ısıtmayı da sağlar. Böylece ister çelik levhalara, ister çeşitli kalınlıklarda doku kesmeye uyarlanmış olsun, kesme lazerleri gerçekleştirilmiştir. Tıp alanında en ilgi çekici uygulamalar göz cerrahisinde görülmektedir. Retinadaki yırtığın yarılmasını önlemek için çok belirgin noktaları ısıtmak gerekir ki, lazer bunu sağlamaktadır:; üstelik ışığı gözle görüldüğü için, gözün kırılma yapan ortamlarını fazla ısıtarak fazla hırpalamaz.

Pek doğal olarak bunun tehlikeleri de vardır: bir paralel lazer demeti göze çarparsa, göz bunu derhal retina üzerine odaklar ve bu kazanın sonucu retina ciddi şekilde yanar. Lazerle çalışanlar, bu ışığın doğrudan kendi gözlerine gelmemesine özen göstermelidir.

I.4. HOLOGRAFİ

LAZER BİR CİSMİN FOTOĞRAFINI ÇEKMEZ, AMA UYGUN ŞEKİLDE AYDINLATILDIĞINDA, ÜÇ BOYUTLU GÖRÜNTÜSÜNÜ VEREN BİR “HOLOGRAMINI” ALIR.

Holografinin ilkesi, D. Gabor tarafından 1948’de ortaya kondu: demek ki lazerden oldukça öncelere dayanmaktadır, ama hem güçlü, hem de bağdaşık ışık demeti sayesinde lazer holografiyi uygulanabilir kılmıştır.

I.4.A. İLKE

Bir cismin bir ışık dalgasının genliğini değil fazını değiştirdiğini, yani çeşitli ışık titreşimleri arasına basit bir zaman kayması soktuğunu düşünelim. Bu dalgayı bir film üzerine aktarırsak zaman kaymasıyla ilgili hiçbir kayıt alınmaz. Ama bu dalga, cisimle değişikliğe uğramamış bir “referans” dalgayla çakıştırılırsa, iki dalga girişim yapar ve kaymaları-cisim yüzünden-film üzerinde karanlık ve ışıklı çizgilerden oluşmuş almaşık bir dizi halinde yer alır; bu çizgiler görünürde rasgele dağılmış gibidir, ama konumları, biçimleri ve birbirinden uzaklıkları cismin doğasına ve yerleştirilmesine bağlıdır.

Bu şekilde elde edilmiş “hologram” tanınabilir hiçbir şeye benzemez, ama gene de cisimden gelen dalgaca taşınana bütün bilgiyi kodlanmış biçimde içinde saklar; bu bilgi, dekode edebilecek bir durum yaratabildiği ölçüde cismin görünüşünü yeniden oluşturabilecek yeterliliktedir.

Bunun için üzerine, hologramı gerçekleştirmeye yarayan aynı referans dalgayı yönlendirmek yeterli olur: o zaman bu aynı ışıkla aydınlatılmış cisme doğrudan bakıldığında ne görülürse, o görülmeye başlanır. Ve başımızı biraz oynatınca görüntü hafifçe değişir; hatta ilk cisimce gizlenmiş muhtemel başka cisimleri de görmek mümkün olur…

I.4.B. NEDEN LAZER ?

Demek ki holografinin ilkesi, girişim yapacak olan iki dalganın bağdaşık olması koşuluyla bu girişim olayına dayanır. Klasik bağdaşık olmayan kaynaklar, alışılagelmiş girişim montajlarındaki gibi, aynı ince yarıklardan ikiye ayrılmaları gerektirir, bu da çok az bir güç verir. Lazerle, buna karşılık kilovatlarca güçte bağdaşık bir ışık elde edilir ve demet iki bağdaşık kısma ayrılabilir. Hatta iki farklı lazere girişim yaptırılabilir. Nitekim holografi, neredeyse tamamen kuramsal bir tuhaflık iken, 1962’den sonra etkili bir teknik haline geldi. Onu Lippmann yöntemiyle-o da girişime dayanır-birleştirerek sadece üç boyutlu değil, renkli görüntüler de elde etmek mümkün olmuştur.

I.4.C. DİĞER LAZERLER

İlginç enerji düzeyleri gösteren, yani atom sayılarının tersine çevrilmesine yatkın olan herhangi bir malzemeyle lazer yapmak mümkündür. Çok sayıda yarı iletkenle yapılan şey budur ve bunlardan çok az güçlü, ama son derece küçük boyutlarıyla ilgi çekici olan lazerler gerçekleştirilmektedir.

Yine çok sayıda gazla lazerler gerçekleştirilir ve moleküllerin enerji düzeylerini (CO2 lazeri), iyonlaşmış bir gazın uyarılmış durumlarını (argon lazeri) veya bir elementin üst düzeyini bir başka elementin çok kalabalık düzeyiyle çakışmasını (helyum-neon lazeri) kullanan en az üç çeşit gaz lazeri bilinmektedir. Böylece morötesinden, uzak kızılaltına kadar uzanan geniş bir frekans yelpazesini kullanan lazerlere sahip olunur.

II. TEMEL İLKELER

Atomlar ve moleküller alçak ve yüksek enerji düzeylerinde bulunabilirler. Alçak enerji düzeyinde bulunanları, genellikle ısı etkisiyle uyararak daha yüksek düzeylere geçirmek olanaklıdır;yüksek düzeylere geçen atomlar ve moleküller daha alçak bir düzeye geri dönerken ışık salarlar. Adi ışık kaynaklarında, uyarılmış durumdaki çok sayıda atom ve molekül birbirlerinden bağımsız olarak ve birçok değişik renkte (bir başka deyişle, dalga boyunda) ışık yayarlar. Ama, bir atomun uyarılmış durumda bulunduğu kısa zaman aralığında üzerine belirli bir dalga boyunda ışık düşürülecek olursa, atom kendisini uyaran bu dalga ile aynı fazda ışınım salar. Bu ışınım, böylece, uyaran dalgaya eklenmiş ve onu güçlendirmiş olur;, eğer bu olgu yeterince yoğun bir biçimde gerçekleştirilirse sonuçta çok güçlü ve tümüyle eş fazlı bir ışık demeti elde edilir (“eş fazlı” terimi, demeti oluşturan dalgaların tümünün aynı frekansta (aynı renkte) olduğunu ve aynı fazda titreştiklerini ifade eder).

Uyarılmış yayım ilkesini Einstein 1917’de ortaya koymuş ama 1950’lere gelinceye değin bu ilke uygulamaya geçirilememişti. 1953’te ABDli fizikçiler C.H. Townes ve A.L. Schawlow bu ilkeden yararlanarak mikrodalga frekanslarında çalışan maseri gerçekleştirdiler. SSCBLİ fizikçiler A. Phorov ve N. Basov da, bağımsız olarak, benzer çalışmalar yürüttüler. ABDli fizikçi T.H. Maiman tarafından 1960’da gerçekleştirilen ilk lazerde yakuttan bir çubuk kullanılıyordu; sonradan çok çeşitli lazer türleri gerçekleştirildi.

Uyarılmış yayım olayı, kendiliğinden yayım olayı gibi, uyarılmış bir E2 enerji halinden, bir E1 alt enerji düzeyine düşen bir atomun, bir molekülün vb. bir foton yayımlanmasına karşılık gelir. Böylece oluşan ışımanın v frekansı E2-E1=hv bağıntısıyla verilir (h Planck değişmezi). Uyarılmış yayım, bir fotonun sistem üzerine, E2den E1e geçişi belirten, E2-E1 enerjisiyle gelmesinden kaynaklanır. Isıl dengede olan bir sistemde, uyarılmış parçacık sayısı önemsizdir. Bu durumda, sistem üzerine gelen v=(E2-E1)/h frekanslı bir ışımanın soğurulma olasılığı, uyarılmış bir yayıma yol açma olasılığından çok daha yüksektir. Söz konusu ışımanın uyarılmış bir yayıma yol açma olasılığının kayda değer olması için, E2 enerjili parçacıkların sayısı N2’den, E1 enerjili parçacıkların sayısı N1’den büyük olması gerekir. Bu sonuca ulaşmak için, pompalama adı verilen bir dış uyarma yardımıyla, bir nüfus evirtimi gerçekleştirilir.

Uyarılmış yayım sırasında ortaya çıkan iki enerji düzeyi her zaman temel enerji düzeyi ve pompalamayla erişilen uyarılmış düzey değildir. Burada çoğu kez, Söz konusu olan ara düzeylerdir (şek. 1 ve 2).

Lazer olayını başlatmak için uyarılmış yayımı olanaklı kılacak enerji düzeylerine sahip kurucu öğelerden (atomlar, moleküller, iyonlar vb.) oluşan etkin bir ortam gereklidir. Bu ortam, iki enerji düzeyi arasında nüfus evirtimi oluşturacak biçimde pompalanır. Frekansı ışınımsal geçişe karşılık gelen tek renkli bir ışık demeti etkin bir ortama gönderildiğinde buradan uyarılmış yayımla yükseltilmiş olarak ve aynı doğrultuda çıkar. Bu yükseltici ortamı, bir ışıma üretecine dönüştürmek için bir rezonans boşluğuna yerleştirmek gerekir. Bir lazerde bu boşluk, birbirine koşut ve yayımlanan ışımaya dik iki aynadan oluşur (Pérot-Fabry boşluğu). Aynalardan en az biri, üretilen ışımanın dışarı çıkabilmesini sağlamak için kısmen saydamdır. Aynalar arasındaki uzaklık birkaç santimetreden birkaç metreye kadar değişebilir.

Bir lazerin yayımladığı ışık hem uzayda hem de zamanda bağdaşıktır, çünkü fotonlar aynı dalga boyunda, aynı doğrultuda ve aralarında faz farkı olmaksızın yayımlanır. Bundan önemli pratik sonuçlar elde edilir:

1. Bağdaşık olmayan kaynakların ışımalarının tersine, lazer ışıması yönlendirilmiştir; demetin ıraksaması birkaç saniyelik bir açıyla sınırlandırılabilir. Dolayısıyla küçük bir uzay açısı içinde kimi zaman çok büyük bir enerji ya da güç elde edilebilir.

2. Bir lazer demeti odaklandığında, kullanılan optik düzeneğin odağında çok küçük boyutlu (birkaç dalga boyu kadar) bir odak lekesi, dolayısıyla da birim yüzey başına çok büyük bir enerji yoğunluğu elde edilir.

Çeşitli ayırt edici özellikleri yönünden birbirinden farlı birçok lazer türü vardır. Bunlar etkin ortama göre (katı, sıvı, gaz, yarıiletken), pompalama biçimine göre (flaş, gazlı deşarj tüpü, akım pompalamalı, kimyasal tepkime) ya da çalışma biçimine göre (sürekli, başıboş, tetiklemeli) sınıflandırılabilir.

Optik pompalama (bir yansıtıcı ile çevrili, helis biçiminde ya da doğrusal flaş) özellikle katı lazerleri için (şek. 3 ve 4), elektriksel pompalama (elektriksel boşalma) ise gaz lazerleri için kullanılır. Kimyasal tepkimeyle pompalama, birbirlerine etkiyen maddeler (örneğin döteryum fluorür molekülleri veren fluor+döteryum) kullanarak uyarılmış durumda moleküller üretmeye dayanır. Kimi durumlarda, üretilen molekülün (eksipleks [uyarılmış kompleksi], temel hali ayrışık olduğundan ancak uyarılmış elektron hallerinde bir bağlı hal vardır, bu da nüfus evirtimini kolaylaştırır (örneğin soy gaz halojenürleri).

Etkin ortam sürekli olarak pompalandığında, lazer yayımı kalıcı olabilir: böylece sürekli bir lazer elde edilir. Pompalama flaş yapılırsa, yayım darbelidir. Bir lazer darbesinin süresi, genellikle flaşın süresinden kısa olduğundan uyarılmış düzey ardışık olarak boşalır ve yeniden dolar, bu da flaşın çalışmasının sona ermesiyle tamamlanan birbirine yakın lazer darbelerinden oluşmuş bir dizinin elde edilmesine neden olur (başıboş çalışma). Darbeli bir lazerde, çalışma eşiğine erişildiğinde lazer yayımı engellenebilirse pompalama daha yüksek bir düzeye dek sürdürülebilir. Daha sonra yayım, kısa (birkaç nanosaniye kadar) bir darbe biçiminde serbest bırakılarak tepe değeri oldukça büyük bir güç elde edilebilir. Yayımı başlatmak için döner prizma, Kerr etkisi ya da akustik-optik etki gibi değişik yöntemler kullanılır.

Yapılış ve kullanım alanları açısından değişik türlerde lazerler geliştirilmiştir, bunların en önemlileri aşağıda sıralanmıştır.

III. LAZER ÇEŞİTLERİ

OPTİK POMPALAMALI KATI LAZERLER

Lazer etkisinin oluşması için atomları uyararak yüksek enerji düzeylerine çıkmalarını sağlamanın yollarından biri lazerde kullanılan maddeye, bu maddenin yayacağı ışığın frekansından daha yüksek frekanslı ışık düşürmektir. Optik pompalama olarak adlandırılan bu sürecin verimi düşük olduğundan güçlü bir pompalama gerçekleştirilmesi gerekir.

Optik pompalamalı lazerde uygun malzemeden yapılmış bir çubuk bulunur; bu çubuğun uçları düz ve birbirine paralel olacak biçimde parlatılmış ve lazer ışığının yansıyabilmesi için ayna ile kaplanmıştır. Çubuğun yan çeperi saydamdır, böylece pompalayıcı lambadan gelen ışığın çubuğun içine girmesi sağlanır. Pompalayıcı lamba darbeli çalışan bir gaz boşalmalı lamba (fotoğrafçılıkta kullanılan elektronik flaş lambasının benzeri) olabilir; bu lamba çubuğun çevresine sarılmış olabileceği gibi, çubuğun yanına boylamasına yerleştirilmiş ya da ışığının bir ayna aracılığıyla çubuğa odaklanması sağlanmış olabilir. İlk lazerde yapay bir gök yakut kristali (safir, alüminyum oksit) olan pembe yakut kullanılmıştı. Sonraları birçok azrak toprak elementleri kullanıldı; en yaygın kullanılan element neodimdir. Bu tür lazerden çok güçlü ışık çakımları biçiminde binlerce wattlık güçler elde edilebilir.

SIVI LAZERLER

Katı lazerlerin bir sakıncası yüksek güçte çalışırken malzeme içinde oluşan ya da pompalama lambasından kaynaklanan çok büyük ısının etkisiyle zaman zaman kırılma ve hasar ortaya çıkmasıdır. Sıvı lazerlerde, kristal ya da camsı çubuk yerine saydam bir bölme içine konmuş uygun bir sıvı (örn. neodim oksit ya da neodim klorürün selenyum oksiklorürdeki eriyiği) kullanılır. Sıvının içine konduğu bölme istenildiği kadar büyük yapılabilir, böylece yüksek güçlerin elde edilmesi olanaklı olur. Ne var ki inorganik sıvıların pek azı lazerlerde kullanılmaya elverişlidir.

BOYARMADDELİ LAZERLER

Bazı organik boyar maddeler flüorışıma özelliği gösterir, bir başka deyişle üzerlerine düşen ışığı farklı bir renkte yeniden yayımlarlar. Atomlarının uyarılmış durumda bulunma süresinin çok kısa (saniyenin kesri kadar) olmasına ve yayımlanan ışığın dar bir bantta toplanmasının olanaklı olmamasına karşılık, boyarmaddelerin lazerlerde kullanılmasının nedeni bunların geniş bir frekans bölmesi içinde ayarlanabilme özelliği göstermesidir.

Rodamin 6G gibi boyarmaddeler başka bir lazerle uyarılma sonucunda lazer etkisi gösterir. Turuncu-sarı bir ışık yayan rodamin 6G, sürekli olarak çalışan (ışığı darbeler biçiminde değil sürekli bir demet olarak veren) ilk lazerin gerçekleştirilmesinde yaralanılan boyarmaddedir; böylece frekansı ayarlanabilen sürekli bir lazer demetinin elde edilmesi olanaklı olmuştur. Bir başka boyarmadde olan metilumbelliferon, hidroklorik asitle karıştırıldığında ışık tayfının morötesinden sarıya kadar uzanan bölgesinde lazer etkisi gösterir, böylece tayfın bu bölgesinde istenen dalga boyunda lazer ışığı elde edilebilir.

GAZ LAZERLERİ

Gazlı boşalmada atomlar uyarılmış düzeylere geçerler ve ışık yayımlarlar; bu olgunun en yaygın örneği ışıklı neon lambalarıdır. Bu süreçte bazen çok sayıda atom, belirli bir enerji düzeyinde birikebilir; boşalmalı lambalı iki ucuna aynalar yerleştirilecek olursa lazer etkisi ortaya çıkar. Bu olguya yol açan koşullar seyrek ortaya çıkar ve boşalmanın ortaya saldığı ışınımdaki dalga boylarının pek azı için geçerlidir; ama birçok gazda lazer etkisi oluşturulabilmektedir. Elde edilen lazer demeti ideal doğru çizgiye çok yakındır; bu nedenle inşaat işlerinde hizalama amacıyla kullanılır.

DİNAMİK GAZ LAZERLERİ

Sıcak bir gaz hızla soğutulursa, alçak enerji düzeylerinin birindeki moleküllerin sayısı daha hızlı azalıp yüksek bir düzeydeki moleküllerin sayısının altına düşebilir; bu durumda lazer etkisi ortaya çıkar. Bu koşul, yanmakta olan ve azotla karıştırılmış karbon monoksitin bir jet (fışkırma) memesinden çıkarken birden genleşmesi sırasında sağlanabilir. Böyle bir lazerden 30 bin wattın üstünde yüksek güçler elde edilebilmiştir.

KİMYASAL LAZERLER

Bazı kimyasal tepkimelerde lazer etkisinin oluşmasına yeterli olacak sayıda yüksek enerjili atomlar ortaya çıkar. Örneğin, hidrojen ve flüor elementleri hidrojen flüorür oluşturmak üzere tepkimeye girdiğinde ortamda bulunan karbon di oksit gazında lazer etkisi oluşur. Bu tür lazerlerde az miktarda kimyasal madde kullanılarak yüksek enerjiler elde etmek olanaklıdır.

YARIİLETKEN LAZERLER

Yarıiletken lazerde farklı türden katkılanmış iki yarıiletken madde düz bir bitişim oluşturacak biçimde yan yana getirilmiştir. Böyle bir aygıttan yüksek şiddette bir elektrik akımı geçirilirse eklem bölgesinde lazer ışığı ortaya çıkar. Çıkış güçleri sınırlı olan yarıiletken lazerler, maliyetlerinin düşüklüğü, boyutlarının küçük olması ve verimliliklerinin yüksekliği nedeniyle kısa erimli iletişimde (telefon, televizyon vb.) ve uzaklık ölçme aygıtlarında kullanılır.

LAZERLERİN YÜKSELTEÇ VE OSİLATÖR OLARAK KULLANILMASI

Lazerlerin çoğunda etkin malzeme uzun ve dar bir sütun biçimindedir, bunun iki ucuna birbirine bakan birer ayna yerleştirilmiştir. Aynalar kaldırılırsa, bu aygıt, güçlü bir lazer demetini yükselterek daha da güçlü bir lazer demeti oluşturmak amacıyla kullanılabilir. Aynaların varlığı ise aygıtın bir osilatör (titreşim üreteci) olarak çalışması sonucunu doğurur; bu durumda üretilen lazer demetinin dalga boyu, başlıca iki etmene bağlıdır: Aynalar arasındaki uzaklık ve lazer ortamının nitelikleri.

KISA, GÜÇLÜ DARBELER ÜRETEN LAZERLER

Yükselteç olarak çalışan sütun ile iki uçtaki aynalar arasına yerleştirilen bir engelleyici (obtüratör) kapalıyken lazer etkisi oluşamaz. Lazer etkisinin ortaya çıkması için gerekli koşullar sağlanmışken engelleyici birden açılırsa, sütunda depolanmış durumdaki enerji, saniyenin çok küçük bir kesri kadar süren ve tepe gücü birkaç yüz bin kilowatt olabilen çok güçlü bir ışık darbesi biçiminde açığa çıkar. Bu işleme “Q anahtarlaması” denir. Q anahtarı mekanik bir engelleyici olabilir; ama genellikle normal durumda ışık geçirmeyen, bir elektrik darbesi uygulandığında ise saydam duruma geçen sıvı ya da katı bir optik engelleyici kullanılır. Engelleyici olarak, normal durumda ışık geçirmeyen, ama üzerine lazer ışığı düşürüldüğünde saydamlaşan bir boyarmaddeden de yararlanılabilir.

Bir lazer genellikle birkaç kipte birden (bir başka deyişle, değişik frekanslarda) titreşim yapar. Bu kipler kip kilitlenmesi denen bir yöntemle eş zamanlanabilir; bu durumda daha da güçlü ve kısa süreli darbeler elde edilir. Böyle darbelerden çok hızlı delik açma işlemlerinde yararlanılır; deliğin açılması o kadar kısa sürede gerçekleşir ki, çevredeki malzeme bu işlemden etkilenmez. Bu tür ışık darbeleri bilimsel araştırmalarda da kullanılır.

AYARLANABİLİR LAZERLER

Lazerin değişik frekanslara ayarlanabilmesi bilimsel araştırmalar açısından önemli bir özelliktir; bu olanağı sağlayan lazer türleri arasında geniş bir frekans bandında çalışabilen boyarmaddeli lazerler başta gelir. Aynalardan biri yerine yalnızca belirli bir frekanstaki ışığı yansıtan bir ayna (örn. bir kırınım ağı) konarak istenen dalga boyu seçilir. Bazı katı lazerler de, sıcaklık ve kristalin yönlenişi değiştirilerek, dar bir frekans bölgesi içinde ayarlanabilir. Kimi lazerler ise, harmonikler (gelen lazer demeti frekansının tamsayı katları frekanslı demetler) üretebilir; lityum iyodat kristalinin bu özelliğinden yararlanılarak, kızılötesi ışınımdan sudan daha kolay geçebilen yeşil lazer ışığı elde edilir.

KATI LAZERLERİ

Kullanılan ilk gereç yakuttur (1960). Bu, % 0.05 oranında üçdeğereli krom iyonları (Cr+++) içeren, saydam bir Al2O3 alümin kristalidir; krom iyonlarının enerji düzeylerinin konumu nedeniyle nüfus evirtimine olanak verir. Uygulamada, yapay yakutlardan yontulmuş çubuklar kullanılır. Yayım dalga boyu, kızıl bölgede 694.3 nm dir. Başıboş çalışmada bir yakut lazeri 30-40 kilowatt, darbeli çalışmada ise 30 ile 100 MW arası güç sağlar.

Neodimli cam, yakut lazerlerinden birkaç yıl sonra ortaya çıkmıştır. burada, neodim iyonlarıyla (Nd+++) katkılanmış biçimsiz bir malzeme (cam) söz konusudur. Bu, 1060nm de (yakın kızılötesi) yayım yapan, 4 düzeyli bir malzemedir. Neodimli cam lazerleri yalnızca darbelidir. Bunların birbirinden oldukça farklı iki türü vardır: askeri uzaklık ölçümde kullanılan küçük lazerler ve plazmaları, çekirdek kaynaşmalarını incelemede kullanılan yüksek güçlü lazerler. İkinci tür lazerler bir lazer yükselteçleri bataryası biçimindedir.

YAG (Yttrium Alüminyum Garnet) neodime katkılanmış ve aynı dalga boyu üzerinden yayım yapan bir itriyum ve alüminyum grenasıdır. Bu gereç sürekli ya da darbeli bir çalışmaya olanak verir. Erbiyum ya da holmiyum iyonları gibi başka malzemeler üzerinde de incelemeler yapılmaktadır.

GAZ LAZERLERİ

Ortam çoğu kez bir gaz karışımından oluşur; karışımdaki bileşenlerden biri, uyarımını çarpışmalarla öbürüne aktarır. En yaygın olanları, güçleri zayıf (miliwatt düzeyinde) olmakla birlikte, helyum-neon lazerleridir. Bu lazerlerde yayım çizgilerini veren neon gazıdır. En çok kullanılan dalga boyu, kızıl bölgede 632.8 nm’dir. 1150 ve 3390 nm’lik tayf çizgileri de kullanılabilir.

İyon lazerleri, etkin malzemesi iyonlaştırılmış bir gaz olan gaz lazerleridir. En yaygın olan argon lazeridir. Argon atomları, bir elektrik boşalmasının elektronlarıyla çarpışarak iyonlaşır. Bu lazerlerle çok sayıda tayf sayısı elde edilebilir (mavi-yeşil bölgede 488 nm, 496.5 nm ve 514.5 nm). Yayımlanan güç yüksektir (onlarca watt).

Karbondioksit lazerleri’nde, CO2 karbondioksit moleküllerinin temel elektron durumundaki titreşim-dönme geçişlerinden yararlanılır. Gaz karışım CO2, azot ve helyumdan oluşur ve uyarma azot moleküllerinden karbondioksit moleküllerine aktarılır. Sürekli ya da darbeli olabilen yayım kızılaltı bölgede (10.6 mm ya da 9.6 mm) yapılır. Karbondioksit lazerlerinin %10 ile %15 arasında değişen yüksek bir verimi vardır. Maksimum güç, sürekli çalışmada 400 kW, kısa darbeli çalışmada ise 10 TW dir.

HF/DF kimyasal lazerler’de lazer yayımı verecek olan, titreşim yönünden uyarılmış HF ya da DF moleküllerini üretmek için flüor atomunun hidrojen (ya da izotopu döteryum) üzerindeki tepkimesinden yaralanılır. En güçlü lazerlerde, flüor atomu, F2 flüor molekülünün (ya da NF3 bileşiğinin) özel bir odada hidrojenle (ya da bir hidrokarbonla) yanmasıyla elde edilir. Yayım dalga boyları HFF lazer için 2.7 mm, DF lazer için ise 3.8 mm dolayındadır. DF lazer bugüne dek gerçekleştirilmiş olan en güçlü sürekli lazerdir. ABD ‘de yapılmış bir ilkörnek, 2.2 MW lik bir güç sağlanmıştır.

Metal buharlı lazerler’de (en yaygın olanı helyum-kadmiyum lazeridir) etkin ortam, buhar halindeki kadmiyumdan oluşur. 100 miliwatt’a kadar olan güçlerde, 441.6 ve 325 nm’lik dalga boylarıyla sürekli çalışma sağlanabilir.

En son gerçekleştirilmiş lazer tipi olan iyot lazerleri’nde etkin ortam olarak atom halinde iyot kullanılır ve cam lazerinin dalga boyuna yakın, 1315 nm’lik bir dalga boyu üzerinden yayım gerçekleştirilir. Bu tip bir lazer ile 1 TW’lık bir güç sağlanmıştır.

SERBEST ELEKTRONLU LAZERLER

Bunlar, bir hızlandırıcıdan çıkan yüksek enerjili elektron paketlerini, evirici olarak adlandırılan bir dizi mıknatısın oluşturduğu sabit, almaşık bir magnetik alanın içinden geçirerek senkroton, bağdaşık ve tek renkli yeğin bir ışıma kaynağı elde etmeye olanak verir. Elektronların enerjileri ya da magnetik alanın dönemi değiştirilerek, X ışınlarının dalga boylarından, uzak kızılötesinin dalga boylarına kadar değişen dalga boyları elde edilebilir.

IV. LAZERİN UYGULAMA ALANLARI

Lazer ışımasına özgü özellikler (düşük ıraksama, çok küçük bir yüzey üzerine odaklaştırılabilme, yüksek oranda tekrenklilik ve bağdaşıklık, darbeli lazerlerle çok yüksek ani güçler elde edilebilmesi) bu düzeneklerin giderek daha geniş uygulama alanları bulmasını sağlamaktadır:

Makine yapımında, optikte ve bayındırlık işlerinde (yollar, tüneller vb.) hizalama;

Yüzeyleri, uzunlukları, düzeyleri biçim değiştirmeleri (holografi, lazer taneliliği, harelenme ile) ve yer değiştirmeleri ölçme, hız ölçüm, açıları ölçme, lazer cayrometresi, uzaklık ölçüm, tane ölçüm vb.;

Bir lazer demetini yoğunlaştırarak kaynak, işleme, delme, kesme;

Plazmaları üretme ve inceleme, denetimli nükleer kaynaşma tepkimeleri üretme;

Serbest uzayda telekomünikasyon ve özellikle optik liflerle sabit noktalar arasında bağlantı kurma;

Çubuklu kodların okunması, sayısal plakların (işitsel ya da görsel) okunması;

Foto dizgi, baskı makineleri;

Lazer gösterileri, lazer hologramları;

Tıbbi ve askeri uygulamalar.

Lazer ışığı, başka kaynaklardan elde edilen ışığa oranla çok daha güçlü, tek renkli ve eş fazlıdır; dağılmadan yayılan çok ince bir demeti oluşturur. Farklı türden lazerler bu niteliklere değişik oranlarda uyan demetler üretirler; ayrıca lazerler arasında büyüklük, verim ve dalga boyu açılarından da farklılıklar vardır. Her uygulama alanı için en uygun lazer türü seçilerek lazerin bulunuşundan önce çok zor gerçekleştirilebilen ya da hiç gerçekleştirilemeyen birçok işlem yapılabilmektedir.

Gaz (örn. helyum-neon) lazeriyle üretilen ve görünür ışıktan oluşan sürekli bir demet, ideal doğru çizgiye çok yakındır ve bu niteliği nedeniyle her tür hizalama işinde kullanılır. Böyle bir lazerden çıkan demetin ıraksaması (demeti oluşturan ışınların birbirlerinden uzaklaşmaları) 1/1000 dolayındadır, bu da kuramsal sınıra yakın bir değerdir. Büyük inşaatlarda, örneğin delerek tünel açan makinelerin denetiminde ya da boru hatlarının döşenmesinde lazerden yaygın bir biçimde yararlanılır. Büyük jet uçaklarının yapımında kullanılan tezgahlarda hizalama amacıyla lazer kullanılarak 60 m’lik uzaklıklarda 0.25mm duyarlıkla çalışmak olanaklıdır.

Darbeli lazer, ışıklı radarlarda kullanılır; “lidar” olarak adlandırılan bu radar, ışık demetinin çok ince olması nedeniyle, hedeflerin keskin bir biçimde belirlenmesine olanak sağlar. Radarda olduğu gibi, lidarda da bir cismin uzaklığı, ışığın o cisme ulaşması ve yansıyıp geri gelmesi için gereken zaman ölçülerek bulunur. Ay yüzeyine yerleştirilmiş bir aynadan yansıyıp Yer’e geri dönen lidar yankıları yardımıyla cisimlerin uzaklığı 30 cm’lik hata payıyla ölçülebilmektedir. Ay’a ilk inen astronotlar, Ay’ın yüzeyine, bu ölçümlerde kullanılmak üzere çok prizmalı bir yansıtıcı yerleştirmişlerdir. Yer yüzeyindeki iki gözlemevinden bu aynanın uzaklığı ve doğrultusu aynı anda ölçülürse, bulunan sonuçlardan gözlemevleri arasındaki uzaklık büyük doğrulukla hesaplanabilir. Bu türden bir dizi ölçüm yaparak kıtaların birbirlerine göre kayma hızlarını belirlemek olanaklıdır.

Bir uçağa düşey doğrultuda yerleştirilen lazerli bir radar aracılığıyla, uçağın yerden yüksekliği ölçülebilir ya da örneğin, bir stadyumdaki yarış pistlerinin ya da bir evin çatısının biçimi gibi ince ayrıntılar belirlenebilir. Darbeli lazerli radarla toz parçacılarından, hatta yükseklerdeki hava moleküllerinden yankı almak olanaklıdır. Böylece hava yoğunluklarının ölçülmesi ve hava akımlarının izlenmesi olanaklı olur. Hava alanları üzerindeki bulut örtüsünün yüksekliği basit bir lidar aygıtıyla ölçülebilir.

Lazer demetinin çok yüksek bir eş fazlılık özelliği göstermesi, ışık demetlerinin girişimine dayanan ölçmeler ve uygulamalar bakımından önemli bir üstünlüktür. İkiye ayrılan ve farklı yollar izledikten sonra yeniden bir araya getirilen iki demetin arasında bir faz farkı ortaya çıkabilir. Demetler aynı fazdaysa birbirlerini güçlendirir, zıt fazdaysa zayıflatırlar. İki dalganın toplamı olan dalga, dalgaların izledikleri yolların uzunlukları arasındaki fark yarım dalga boyu (görünen ışık için yaklaşık 0.00003 cm) kadar değiştiğinde aydınlık çizgiden karanlık çizgiye geçen girişim saçakları oluşturur. Bu olgudan yararlanan ölçme aygıtlarına girişimölçer (interferometre) denir. Lazerli girişimölçerlerle çok küçük yer değişimleri saptanabilir, uzaklıklar büyük kesinlikle ölçülebilir. Lazer ışınlarının ıraksamaksızın yol almaları, bu tür ölçümlerin çok büyük uzaklıklar için yapılmasını olanaklı kılar; örneğin yerkabuğundaki kırıkların (fay) iki yanında ortaya çıkan yer değiştirmeler bu yöntemle izlenebilir. İmalat sanayisinde lazerli girişimölçerlerin çok ince tellerin çaplarının ölçülmesi, otomatik takım tezgahlarından çıkan ürünlerin denetimi, üretilen optik parçaların sınanması gibi uygulama alanları vardır.

Lazer ışınları çok yüksek bir tekrenklilik özelliği gösterir, bu nedenle ışığın frekansındaki çok küçük kaymaların saptanmasını olanaklı kılar. Lazere doğru yaklaşmakta olan bir cisimden yansıyan ışığın frekansı, cismin hızına bağlı olarak yükselir; uzaklaşan bir cisimden yansıyan ışığın frekansı ile alçalır. Cisme gönderilen ve yansıyarak geri gelen lazer demetleri bir fotodedektörde bir araya getirilirse iki demetin frekanslarından farklı frekansta bir sinyal elde edilir; bu yolla çok küçük hızların ölçülmesi olanaklıdır.

Lazerden çıkan ışığın kare ya da daire biçimindeki bir halkada dolanması sağlanabilir. Halkanın içinde saat yönünde ve saat yönünün tersinde dolanacak biçimde iki ayrı dalga üretilir. Halka sabitse bu iki dalganın frekansları birbirine eşittir; ama halka da dönüyorsa dalgaların frekansları arasında bir fark belirir, bu fark halkanın dönüş hızı ile orantılıdır. Bu nedenle böyle halka biçimli bir lazer, kendisinde hiçbir hareketli parça bulunmadığı halde, dönmeye duyarlı bir cayroskop işlevi görür.

Lazer ışığının çok parlak ve eş fazlı olmasından görsel etkiler oluşturmakta yararlanılır. Lazerler üç boyutluluk (derinlik) etkisi veren fotoğrafçılıkta da (örn. holografi) yaygın olarak kullanılır.

Bazı lazerlerin verdiği ışık çok güçlüdür; bu ışık mercekler yardımıyla bir noktaya odaklanabilir, böylece elde edilen daha da güçlü ışıkla az miktarda herhangi bir madde buharlaştırılabilir, en sert malzemede küçük delikler açılabilir. Örneğin yakutlu lazerlerle elmasta delik açılabilir, böylece tel çekme işleminde kullanılan kalıplar elde edilir; ya da saatlerde yatak olarak kullanılmak üzere gök yakutta delikler açılabilir. Lazer ışığı canlı hücrenin yalnızca bir bölümünü buharlaştıracak kadar keskin odaklanabilir, böylece kromozomlar üzerinde mikroşirürji olanaklı duruma gelmiştir. Işık geçirmeyen bir film üzerindeki çok küçük ve birbirlerine çok yakın noktaların buharlaştırılması tekniğiyle çok büyük miktarda bilgi saklayabilen bilgisayar bellekleri yapılabilmektedir.

Darbeli lazer demetinin ısıtma etkisi seçici ve çok hızlı bir biçimde kendisini gösterir. Bu etkiden yararlanarak mürekkebi kağıt üzerinden silen bir aygıt geliştirilmiştir; mürekkep lazer ışığını soğurarak buharlaşır ve yanar, bu sırada kağıt etkilenmemiş olarak kalır.

Mekanik olarak ulaşılması olanaksız noktaların ısıtılması da lazerle gerçekleştirilebilmektedir. Lazerin ilk uygulama alanlarından biri olan ağtabaka (retina) cerrahisinde bu özellikten yararlanılır. Daha güçlü lazerlerle başka cerrahi dallarında denemeler yapılmaktadır.

Lazerler küçük ölçekli kesme ve kaynak işlerinde de kullanılmaktadır. Bir maddenin lazerle üretilen güçlü ışık darbesiyle buharlaştırılması ve bu buharın uygun aygıtlarla çözümlenmesi yoluyla çok küçük miktardaki örneklerin çözümlenmesi olanaklı olmaktadır.

Güçlü, tekrenkli ve ıraksamaz oluşu nedeniyle lazer ışığı, ışık saçılımının söz konusu olduğu deney ve uygulamak açısından büyük önem taşır. Saçılıma uğrayarak dalga boyu ya da doğrultusu değişen ışık, çok zayıf bile olsa, kolaylıkla ayırt edilebilir. Raman etkisi denilen saçılım olgusunda, molekül türleri, yol açtıkları kendilerine özgü dalga boyu değişimleri aracılığıyla belirlenebilir. Lazerler ve duyarlı spektroskopi aygıtları kullanılarak kullanılarak çok küçük miktardaki saydam sıvı, gaz ya da katıyı çözümlemek olanaklıdır. Raman saçılımına uğramış lazer ışığından yaralanılarak atmosferdeki kirleticiler uzak masefelerden belirlenip ölçülebilir.

Lazer demetlerinden iletişimde de yararlanılır. Işığın frekansı çok yüksek olduğundan (görünen ışık için 5´1014 hertz dolayında ) çok karmaşık ve yüksek frekanslı sinyallerle modüle edilebilir. Tek bir lazer demetiyle, kuramsal olarak, mevcut bütün radyo kanallarının taşıdığı bilgiyi taşımak olanaklıdır; pratikte, aynı anda yedi televizyon kanalı iletilebilmektedir. Lazer ışığı yağmur, sis, kar gibi doğa olaylarından etkilendiğinden, güvenilir bir iletişim sağlayabilmek için lazer demetinin koruyucu borular içinden geçirilmesi gerekir. Lazerler özel amaçlı iletişim sistemlerinde yaygın olarak kullanılmaktadır. Lazer demetinin ıraksamazlık özelliği, uzayda gerçekleştirilen uzak mesafe iletişiminde düşük güçlü vericiler kullanılmasını olanaklı kılmaktadır.

Bilimsel alanda lazer kaynakları, yayınım olayına, özellikle de Raman yayınımı ve Brillouin yayınımına ilişkin bütün deneyleri yeniden gündeme getirmiş ve bu alanda büyük gelişmeler sağlamıştır. Bu kaynaklar çok sayıda tayfgözlem ölçümünü artan bir duyarlıkla gerçekleştirmeye olanak verir (çizgilerin Doppler genişlemesinin ortadan kaldırılması). Bu kaynaklar yardımıyla kırınım problemlerini incelemede ve özellikle üç boyutlu görüntü elde etmeye olanak veren holografi tekniğinde çok önemli gelişmeler kaydedildi. Lazer kaynakları, çok yeğin alanlarla ortaya çıkan problemlere ilişkin olan ve doğrusal olmayan optik adı verilen yeni bir araştırma alanının doğmasına neden oldu. Ayarlanabilir lazerlerin (bunların yayım frekansları ayarlanabilir) yakın geçmişteki gelişimi, kimyasal tepkimelerin mekanizmalarını daha iyi anlamaya olanak veren lazerle seçici fotokimyanın gelişmesine yol açtı. Lazer uyarmalarının seçiciliği, gaz halindeki moleküler bir bileşiğin farlı izotop türlerini ayırmada kullanılabilir (uranyum 235’in ayrılması).

IV.1. GÜVENLİK

Lazer ışıması, çok genel olarak göz için tehlikelidir. Göz merceği, aldığı ışımayı retina üzerine odaklaştırır, bu ise göz merceğine bir lazer ışıması gelmesi durumunda retina üzerinde (yayımın uzay bağdaşımı özelliği göstermesi nedeniyle) birim yüzey başına gücü (ya da enerjisi) oldukça yüksek olan çok küçük boyutlu bir lazer lekesinin oluşumuna yol açar. Retinaya yönelik tehlike, göz ortamlarının saydam oldukları (400 ile 1400 nm arasındaki) dalga boylarında söz konusudur. Tehlike eşiği değerleri yayımın dalga boyuna, süresine ve biçimine (sürekli, darbeli vb.) bağlıdır. Örneğin, 0.25 saniyeden daha uzun süre göze gelen 1 mW’lık bir görünür lazer yayımı tehlikelidir. Odaklaştırmanın olmaması durumunda, deri lezyonu oluşumunun eşik değeri yaklaşık 0.1 W/cm2 bir aydınlatma düzeyine karşılık gelir.

IV.2. LAZERİN TIPTAKİ UYGULAMALARI

Uzmanlık dallarına göre, argon lazeri (foto pıhtılaşma), CO2 lazeri ((lazer bisturisi) ve YAG lazeri (bunun ışınları her çeşit doku tarafından emilir) kullanılır.

K.B.B. hekimliğinde gırtlak urlarının cerrahisinde (özellikle ses tellerinin iyicil urları, ve çocuk papilomatozu) CO2 lazeri kullanılır. Kulak cerrahisinde ise argon lazeri kullanılır (otosponjiyoz).

Kadın hastalıklarında, çoğunlukla, dölyatağı boynu displazilerinde ve Fallop borusu cerrahisinde CO2 lazeri kullanılır.

Gastroenterolojide, sindirim sistemi anjiyomları, mide ve kalın bağırsak küçük polipleri YAG lazeri ile tedavi edilir. Deri hastalıklarında, yüzdeki düz anjiyomları gidermede ve dövmeleri silmede özellikle argon lazeri kullanılır.

Ağız ve diş hastalıklarında CO2-helyum lazerlerinden diş çürüklerinin tedavisinde yararlanılır.

Lazerin en önemli uygulama alanı göz hastalıklarıdır. Argon lazeri birçok göz hastalığının tedavisinde kullanılır. Bir biyomikroskop ve çok aynalı bir kontakt cam birlikte kullanılarak retina dekolmanları , diyabete bağlı retina hastalığı, retina damar bozuklukları , glokom ve bazı göz kanserleri , vb. önlenebilir ve tedavi edilebilir.

IV.3. LAZERİN ASKERİ UYGULAMALARI

Bunların iki telemetrenin yerini alan lazer telemetresi’dir. Bu aygıtın çalışma ilkesi radarınkine benzer. Uzaklık ölçümü yapılacak hedefe bir ışık vurumu yollanır: yankının varış süresi uzaklığın hesaplanmasını sağlar. Bu telemetrelerde genellikle katı lazerleri (yakut, sonra günümüzde neodim katkılı cam) kullanılır.

Lazer cayrometreleri, mekanik olarak çok basittir, dönme hızlarını çok büyük bir duyarlıkla (ters yönde dolaşan iki ışık dalgası arasındaki hareketle oluşan Doppler etkisiyle) ölçerler. Lazer cayrometreleri yakın gelecekte kimi deniz seyir sistemlerinde kullanılan cayroskopların yerini alacaktır.

Buna karşılık, lazer demetiyle iletim sistemleri, ışık dalgalarının yayılmasına meteoroloji koşullarının etkisi nedeniyle klasik hertz demetlerinin yerini alamamıştır; bununla birlikte, kimi özel durumlarda kullanılmaktadır. Tanksavar güdümlü mermileri, klasik uzaktan kumanda kabloları yerine, bir lazer demetiyle uzaktan güdümlü hale getirilmiştir. ABD, bir uydu ile dalmış denizaltılar arasında, ışığı deniz suyunda yayılan mavi-yeşil lazer yardımıyla iletimler gerçekleştirmeye çalışmaktadır.

Lazerin ilginç diğer bir askeri kullanımı da hedef belirlemedir. Lazerle aydınlatılan hedef, böylece bir güdümlü merminin ya da bombanın özgüdücüsü tarafından belirlenir (bu tür bombalar Amerikalılar tarafından Vietnam’da kullanılmıştır).

Aslında, lazer silahı’ndan söz edildiğinde, laboratuarlarda kontrollü erime deneylerinde kullanılanlarla aynı türde olan güçlü büyük lazerler (karbondioksitli lazerler ya da yakın gelecekte kimyasal lazerler) akla gelir. Bunlar, zaman ve uzay içinde, bir ışık topu yardımıyla kıtalar arası bir güdümlü mermi üzerine yöneltilmiş oldukça büyük bir enerji birikimi sağlarlar, bu enerji de, nükleer başlıkların yok edilmesine yetecektir.

V. LAZERİN TIPTA VE ÖZELLİKLE GÖZ TEDAVİSİNDEKİ UYGULAMALARI

V.1. FOTOKOAGULASYONUN

PRENSİPLERİ

Lazer son 10 yıl içerisinde oftalmolojide öyle büyük bir etki yarattı ki retinal hastalıkları tedavi ederken her oftalmolojist bunun avantaj ve sınırlarından haberdar oldular. Bunların çoğu lazeri kullanma konusundaki isteklerini belirtmişlerdir, pekçoğu zaten kullanmaktadırlar. Lazerin kullanımı çok kolay olup sadece yüzeysel anestezi gerektirmektedir. Fotokoagulasyon yanıkları hastaya ve doktora fazla zahmet vermeden fundusa yerleştirilebilir. Bu harika buluş, aslında büyük bir sorumluluk taşır, çünkü hem hastayı lazerle tedavi etmek mümkündür, hem de lazer tedavisine gerek duymadan.

BİYOFİZİK

Meyer-Schwickerath ilk kez iyileştirici yanıkların retinaya güçlü ışık kaynağı fokuslayarak yapılabileceğini keşfetmiştir. Hala geniş çapta kullanılan xenon ark fotokoagulatörünü geliştirmiştir. Xenon ark ampulü beyaz ve infro-kırmızı ışık verebilmesi için belli bir akımla çarptırılır. Özenle kullanıldığında ksenon ark fotokoagulatörü lazer fotokoagulasyonu kadar etkili olabilir.

LAZER (Light amplification by stimulated emission of radiation)

Bir lazer tüpü belli basınç seviyesinde argon gazıyla doldurulmuştur. Elektron şeklindeki akım tüpten geçtiğinde argon molekülleri mavi-yeşil bir ışık yayar. Bu ışın ya aynalar tarafından tüpü dibinde toplanıp bir fiber optik kabloyla slitlamba ya da alternatif bir optik sisteme iletilir. Sınırlı lazer ışını böylece göze iletilmiş olur. Bu retinanın üzerinde yuvarlak bir yanık yaratır, benek gibi.

Bu beneğin boyutları merceklerin ayrılması aracılığıyla genişleyebilir. 50 mikrondan 1000 mikron büyüklüğüne kadar olan benekler retinaya iletilebilir. Pratikte sadece 200 mikron yada 500 mikronluk benekler kullanılır. Fundusta yeterli burnu yapmak için gerekli zaman 0.1 saniyedir. Fotokoagulasyon için kullanılan diğer lazer kaynakları yakut kristal lazer, artık pek kullanılmayan; kripton, neodim ve karbondioksit gaz lazerlerini içermektedir. Son üç kaynak argon kadar geniş kabul görmemiştir. Ama kriptonun kırmızı ışığının pratikte pek çok avantajının olduğu da bir gerçektir.

IŞIĞIN TRANSMİSYONU, DAĞITIMI VE EMİLMESİ

Normal gözde, çok küçük mavi-yeşil ışın kornea veya mercek tarafından emilir. Nükleer bir kataraktta ve makular bölgedeki xanthophyll pigmenti ve aynı zamanda hemoglobin de kısmen argon lazer gazını emecektir. Bu yüzden retinal yüzeye yakın olan makuladan, retinal damarlardan ve hemorrajdan kaçınmak gerekir. Retinal yüzeyi içeren lazer yanığı fibroplastik yaralı dokuyu doğurabilir. Mavi-yeşil ışığın çoğu pigment epiteli seviyesinde emilir. Bundan dolayı, hassas ve az yoğunlukta bir yanık dıştaki retinal katmanlarca sınırlandırılmıştır. Yoğun bir yanık tehlikeli olabilir çünkü retinanın tüm kalınlığını sarabilir. Bu da sinir lifi tabakasını yok edebilir ve sektör alan noksanlığına yol açabilir. Yoğun bir yanık ayrıca retina üzerinde glial doku oluşmasına yol açabilir. Ayrıca Bruch’s zarı ve choriocapillariedeki damarlara ait retinal boşluğa istila edebilir.

Lazer ışını kontak lensin yüzeyiyle kısmen dağıtılır, eğer zarar görmüşse ve ödem oluşmuşsa kornea ve retinayla ve kandaki gibi mat camsı olan mercek opaklığıyla dağıtılır. Işığın dağıtımı, kırmızı yerine daha çok mavi-yeşil olarak anılır. Bu argın lazerin bir dezavantajıdır. Ortamdaki opaklığın oluşumu durumunda, yanık yaratmak için küçük bir nokta miktarı güç ve daha uzun süre gerekli olabilir.

Beyaz hücreler ışığı yansıttığı için chorioretinal uyuşma, zarar görmüş hücre ve optik diskin yüzeyini yakmak gerçekten imkansız hale gelir. Nitekim pigmentasyon bölgeleri lazer ışının emilişini arttırır ve bu çok hassas olan yanıklarla sonuçlanabilir.

ENERJİ YOĞUNLUĞU VE ISI LOKALİZASYONU

Belirli bir yanığın enerji yoğunluğu kullanılan güç ve benek büyüklüğüyle belirlenir. 50 yada 100 mikronluk benekler herhangi bir güç ortamındaki daha büyük benekten daha fazla enerji yoğunluğu sunar. Bunu retina ve koroidin kopmasına ve hemorraja neden olan ve küçük bir benekle daha fazla benzerlik taşıyan bütün bir yanığın yada patlayıcı bir yanığın tehlikesi izler. Koroidal kan akımı tarafından dağıtılmış ısı miktarı eşitlendiğinde beneğin yarıçapı bir dengeye ulaşana kadar yükseltilen ekspozür zamanıyla genişletilebilir. Bu nedenle 0.5 saniyeden uzun bir süre yanık dağıtmanın hiçbir avantajı yoktur.

BENEK BOYUTU, GÜCÜ VE ZAMANI

Bağımsız olarak değişebilen üç parametre beneğin boyutu, gücü ve zamanıdır. 200 mikronluk bir benek boyutu genellikle makular bölge için seçilirken, 500 mikronluk ise çevresel retina için seçilir. Ortamdaki opaklıktan ötürü 50 mikrondan 100 mikrona kadar olan benekler sadece çok yüksek enerji yoğunluğuna ihtiyaç duyulduğunda ve hassas yanıklara ihtiyaç duyulduğunda seçilir. Pek çok durumda, küçük beneklere ihtiyaç yoktur.

En sık kullanılan zamanlar 0.1 veya 0.2 saniyedir. Camsı kan gibi ışık opasite tarafından dağıtılır ve emilirse, zaman 0.5 hatta 1 saniyeye kadar yükselebilir. Büyük beneklerden doğru dağıtılmış azaltılmış enerji yoğunluğundan dolayı, bunlar, genel bir kural olarak, aşırı hassas yanıklardan komplikasyonları engellemek için kullanılmalıdır.

Her ayrı durum için ihtiyaç duyulan doğru ortamlar, test yanıklarının görünüşünün klinik kararına dayanır. Genellikle, güç ortamları alt-eşik seviyelerinde seçilirler ve test benekleri koyuca renklendirilmiş fundi içindeki açık gri ve uçuk fundi içindeki donuk sarının doğru görünüşlerine sahip olana dek yavaşca artırılırlar.

FOVEA ve MACULAR BÖLGENİN ÖNEMİ

Photocoagulation, gerek Macula’ya gerekse diabet için yüzeysel bir retinal ablation yüzeysel fundusun tamamına uygulandığında foveal vizyonu korumak için dizyan edilmiştir. İnsanlar, retinaların büyük bir bölümü olmadan da fonksiyonlarını normal bir şekilde devam ettirebilirler. Bir kişi, 20°’lik görüş açısı ve normal merkezi görüş ile – merkezi görüşün 6/60 oranında azaltılmış olması neredeyse hiçbir insani görsel işlevlerini yerine getirememesine rağmen araba kullanabilmektedir. Ne yazık ki fovea’nın çok hassas anatomik dizaynı onu hastalıklara ve ısıya karşı çevresel retinadan daha savunmasız kılar.

Macula’nın kendisi, fovea’dan yaklaşık olarak iki disk-çapı kadar dışarıya genişleyen artırılmış pigmentasyon bölgesidir. Xanthophyll pigment ve daha büyüğü, Macular bölgedeki daha fazla pigmentlenmiş retinal pigment epitel hücreleri daha çok mavi/yeşil lazer ışığını absorbe ederler ve bu fovea’nın kritik merkezi bölgesine yayılan bir yanıkla sonuçlanabilir. Bu sebepten, benekler genellikle Macula’nın damar serbest bölgesinin içine yerleştirilmezler. Kripton’un kırmızı ışığı, Macular Xanthophyll tarafından daha az absorbe edilir ve parafoveal lezyonların tedavisinde bir avantaj sağlayabilir. Damar serbest bölgenin savunmasızlığının nedeni kolayca oedematous hale gelmesidir. Hücreler, glial destekleyici yapılar tarafından gevşekçe bağlanmışlardır. Oedematous şiş, sistik ödem ve sinaptik bağlantıları bozulmasına yol açar.

LAZER TERCİHİ

Ticari olarak kullanılabilecek birçok lazer mevcuttur. Şimdilerde, her ne kadar kripton da kullanılıyor olsa da çoğunlukla argon kullanılır. Elde edilen ısı, hava veya su ile soğutulur. Genelde, suyla soğutma sistemi daha efektiftir. Fakat hava ile soğutulan lazerler daha ucuzdur. En önemli tercih sebebi teknik desteğin sağlanabilirliği ve makinanın düzenli servisi olmasıdır.

LAZERİN XENON ARK PHOTOCOAGULATION İLE

KARŞILAŞTIRILMASI

Xenon Photocoagulatörlerinin lazer makinalarından daha ucuz ve taşınabilir olmalarından beri, opthalmolojistler için daha kolay kullanılabilir olmuşlardır. İkisininde elde edilebileceği durumlarda, lazer karşılaştırıldığında ateş komplikasyonlarındaki kolaylığından dolayı tercih edilir. Nitekim, önemle belirtilmelidir ki xenon ark photocoagulation’u diabetlerin çevresel retinal ablation’u için argon kadar efektif olduğu kanıtlanmıştır.Xenon ark photocoagulatörlerinin dezavantajları, küçük benek oluşturmadaki yetersizliği, gücü regüle etmedeki zorluğu ve direk bir ophthalmoscopik dağıtım sistemi kullanmalarıdır. Xenon photocoagulatörü ile, çevresel retinal yaraları tedavi etmek kolay değildir. Fovea yakınındaki yaralar, eğer son derce dikkatlice tatbik edilirse tedavi edilirler. Birçok durumda retrobulbar anesteziye iğtiyaç duyulması her ne kadar çok zor bir iş olsa da, komple bir çevresel retinal ablation için xenon ark photocoagulatör kullanmak yine de mümkündür. Sadece lazer bulunamadığı için neovascularization veya diğer risk faktörleri diabetik retinopathy’de mevcut olsa da şeker hastalarından hiçbiri bu tedaviyi geri çevirmemelidir.

Pre-retinal fibrosis’in, macular pucker’in ve çekilme ayrımlasının genişlemesinin komplikasyonları xenon ark photocoagulatör ile daha yaygındır; çünkü yanıkların yoğunluğunun ve daha da sık tam kalınlığının kontrolu daha güçtür. Aynı sebepten dolayı, xenon ışığı ile çevresel photocoagulation uygulanmasından oluşan alan bozuklukları, arogon ile oluşana nazaran daha büyük ve daha eksiksizdir. Fovea etrafındaki tedavi, yanıkların yerleştirilmesine bağlı olmasına rağmen, xenon ile uygulanan, argon ile uygulanana göre, daha ciddi para-central scotomata ile sonuçlanmaktadır. Xenon ( 3 derece ) ile kullanılan en küçük benek boyutu, retinada yaklaşık 1 mm çapındadır veya argondaki en büyük benek boyutunun ( 500 micron ) iki katı kadardır.

Xenon ark photocoagulation, retinal yaşların (deliklerin), retinoblastoma, retrolental fibroplasia ve küçük kötü niyetli melanomanın tedavisinde kullanılabilir. Local anestezi altında argon lazer photocoagulation tolere edemeyen bazı hastalar, xenon arc lazeri kullanarak genel anestezi ile tedavi edilebilirler. Çalışan bir mikroskop yoluyla dağıtılan lazer bir alternatiftir; ama genellikle elde edilebilir değildir.

V.2. LAZER UYGULAMASININ TEDAVİ

ÖNCESİ HAZIRLIĞI VE TEKNİĞİ

TEDAVİ ÖNCESİ DEĞERLENDİRME VE HAZIRLIK

Lazer photocoagulation uygulamasına, prosedür ve onun beklenen etkilerine karşı bilgilendirilmiş, her hastanın ihtiyaçlarına göre dikkatlice biçim verilir.

KLİNİK MUAYENE

Eksiksiz bir ophthalmik bir muayene çok gereklidir. Bu, düzeltilmiş görsel keskinliği, genel slit lamp’i ve görsel alan muayenesini direk ve indirek ophthalmoskopi ve ayrıca Godmann üçlü ayna kontak lensi muayenesini kapsar. Teadviden sonra herhangi bir değişikliği kaydetmek için merkezi görsel keskinliğin dikkatli değerlendirilmesi tedaviden önce önemlidir. Korneal veya lens matlığının değerlendirilmesi, veya camsı bulanıklık da ayrıca önemlidir. Eğer çevredeki yaralar tedavi edilecekse üç aynalı lens bölgeyi muayene etmek için kullanılmalıdır. Bu durum, tedavi sırasında, lenslerin veya camsı opasitelerin sahip olduğu engellerin değerlendirilmesine izin verir.

ENDİREKT OFTALMOSKOPİ

Retina’yı lazer tedavisinden hemen önce indirek ophthalmoskopi ile muayene edilmesi tavsiye edilir. Bu prosedürün, retinın muayene edilecek bölgesi, genellikle ekvatorun arkadaki kısmı olduğu için hasta ile oturulup yönlendirilmesi gerekir. Bu, deliklerin veya gözyaşlarının genellikle aşırı retinal çevrede bulunan retinal ayrılmaya sahip hastalar için uygulanan indirek ophthalmoskop kullanımından farklıdır. Bu hastaların değerlendirilmesinde, hastaların bir kanepe üzerine yatması gereklidir. Lazer tedavinin hemen öncesin fundusun indirek ophthalmik muayene, cerraha uygulayacağı patalojiyi ve çarpıcı dönüm noktalarını hatırlatır. Retina’nın kaba bir taslağının çizilmesinde veya tedavi edilecek alanların fotografik çıktısının işaretlenmesinde çok yardımcı olur.

FUNDAL FOTOGRAFİ VE FLUORESAN ANJİYOGRAFİ

Eğer macula yakınındaki sızan veya ischaemic yaralar tedavi edilecekse veya eğer çevresel retinal ablation, diabetik retinopathy için tasarlanıyorsa fluoresan anjiogramın ön hazırlık olarak elde edilmesi genellikle tavsiye edilir. Bu tip yaraların yeri, fluoresan ile tam olarak belirlenmelidir ve renkli fotoğraflarla dikkatlice karşılaştırılmalıdır. Birleştirilmiş bilgi, düzenlice planlanmış bir tedavi için son derece önemlidir.

Bir fluoresan anjiogramın elde edilememesi, daha klinik yaraların tedavi edilememesi ile sonuçlanır. edilememesi ile sonuçlanır. Durumların birçoğunda, özellikle diabetik retinopathyde, bu tedavi, bütün sızan veya ischaemik bölgelerle ilgilenilmediği için yüzünden başarısız olabilir. Ocular mediadaki matlıklar iyi fotoğrafların çekilmesini engellediği durumlarda, yardımcı olabilecek bir alternatif, Goldmann lensleriyle veya uygun filtrelerle uygulanan indirek ophthalmoskopla yapılan fluoresan çalışmalarını içeren retinanın doğru çizimleri olabilir.

ÖNEMLİ AÇIKLAMALAR

Durumu hasraya açıklamak önemlidir; bu amaç doğrultusunda renkli fundal fotoğraflar ve fluoresan anjiogramlar özellikle kullanılır. Lazer photocoagulation’nunda asıl prosedürün detaylı açıklaması, diğer cerrahi prosedürlerden daha önemlidir; çünkü “lazer” kelimesinin bu konuda fazla bilgisi olmayan pek çok insan için güçlü bilimsel silah gibi ürkütücü bir imajı vardır.

Işığın parlak ışıltıları, biraz acı vericidir ve görme gücünü, hemen tedavi sonrasında, aşırı ışık sonrası retinal beyazlaşma nedeniyle köreltirler. Geçici makuler ödem veya zayıflamış odaklama, birkaç gün için ortaya çıkabilir.

Çoğu lazer tedavisi, özellikle retinal yaşlar, retinal yeni damarlar ve macular hastalık için olanlar, genellikle görme gücünü iyileştirmezler; ama ilerleyen kötüleşmeyeye engel olurlar. Daha ileri kötüleşmeyi engellemede tedavi genellikle son derece etkili olmasına rağmen normal görme gücü eski haline gelmeyebilir. Sonuçlar, hastaların beklentilerini karşılayamayabilir. Bu sebeplerden dolayı, dikkatli açıklama önemlidir.

Retinal ablation seansları sırasında uygulanan kapsamlı lazer photocoagulation, tedavi sonrası birkaç saat için, dikkate değer acıya neden olabilmektedir. Bundan dolayı hastalar önceden uyarılmalıdırlar. Çevresel retinal ablation ve düzenli bir takip için birden çok tedavi seanslarına ihtiyaç vardır. Görsel bozulma ve daha ileri tedaviye ihtiyaç olasılığı da, özellikle diabetik retinopathy için, tedaviden önce açıklanmalıdır.

Son olarak, retina’ya “kaynak yapılması” esasıyla çalışan, photocoagulation’nın kasten yakılan alanların yok ettiği, özellikle vurgulanmalıdır. Hastalar, küçük scotomata, kısıtlanmış görüş alanı, ışığa ve karanlığa alışmanın gecikmesi ve yıllar sonra yıpranmış renkli görme formunda ortaya çıkan yan etkileri tolere etmek zorunda kalacaktırlar.

LAZER TEDAVİSİNİN TEKNİKLERİ

DÖNÜM NOKTALARI

Hemen tedavi öncesinde, renkli fotoğrafların ve fluoresan anjiogramların gözden geçirilmesi önemlidir; özellikle foveal alanların etrafında yanıklar gerekirse. Tedavi sırasında, resimlerin incelenmesinde çeşitli metodlar mevcuttur. Poloroid fotoğraflar veya fluoresan çıktılar, en pratik olanlarıdır. Bazı cerrahlar, tedaviye ihtiyacı bulunan bölgelerin, fotoğraflar üzerinde, işaretlemeyi tercih ederler; böylece etkilenmiş bölgenin topografisini tanıma fırsatı bulmuş olurlar.

GÖZBEBEĞİNİN BÜYÜMESİ

Gözbebeği, tropicamide veya homatropine ile maksimum düzeyde büyütülmelidir. Phenylephrine iyi bir ilavedir, ama cardiovascular hastalığa sahip hastalarda dikkatlice kullanılmalıdır. Sık bir problem, gözbebeğinin, damlalar etkisini kaybettikten sonra daralmasıdır. Bu, rahatsız edici olmasının yanı sıra tehlikelidir; çünkü, kısıtlanmış görüş, yanıkların yanlış konumlandırılmasına neden olur. Bu durum, cerrahın, hastalarını görürken lazer kullandığı kalabalık kliniklerde, oldukça sık görülür. Homotropinin kullanımı, uzun dayanımından ötürü tercih edilir.

ANESTEZİ

Durumların büyük çoğunluğunda, basit bir güncel anestezi yeterli olmaktadır. Düşük bir acı eşiğindeki normal bir hasta, subkonjunktival anesteziye ihtiyaç duyabilir. Eğer gözünü sabit tutma güçlüğü çekiyorsa, retrobulbar anesteziye gerek duyulur. Hasta, yatay meridia doğrultusunda özellikle fundus öncesinde, tedavi edilirken yaygın olarak hissedilen kısa, az etkili bir acıya karşı uyarılmalıdır. Retrobulbar veya subkonjunktival anesteziye iris veya açı tedavi edilecekse genellikle ihtiyaç duyulur.

HASTA / CERRAH POZİSYONU

Hasta ve cerrah slit lamp’e rahat bir şekilde konumlanmalıdırlar. Bu, 30 dakika süren çevresel retinal ablation sürecinde büyük önem taşır.

Cerrah, kontrol konsolünü kontrol etmeli ve güvenlik düğmesinin kapalı olduğundan emin olmalıdır. Güç, zaman ve benek büyüklüğünün ayarı yapılmış ve üç aynalı kontak lens %2 – %6‘lık methylcellulose veya saline ile anestezi yapılmış kornea’ya uygulanır.

LAZER TEKNİĞİ

Hastanın rahat ve gözlerini sabit tutabileceğinden emin olmak için tek ya da iki yöne bakması sağlanmalıdır. Hastadan fovea ve diski tanımlanırken sabir ışığa bakması istenir. Daha sonra, gözlerinin baktığı yönü değiştirmesi istenir; böylece tedavi uygulancak bölgeler görüntüye gelir. Sadece bu basmakta güvenlik düğmesi açık bırakılmalıdır.

Arka kutuptaki yaralar, her zaman merkezi ayna aracığıyla tedavi edilirler. Bu hastanın, pek çok yöne birden bakmasını gerektirir. Retinal yırtık gibi birtakım çevresel yaralar olması durumunda hastanın dümdüz karşıya bakması gereklidir. Yaraların konumu, üç aynalı lenslerden, ekvotardaki veya öndeki aynanın yardımıyla belirlenir.

Her zaman düşük güç seviyesi ile başlanır ve retinadaki tepkinin duyarlılığına göre ihtiyaç duyulması durumunda gerekli miktarda artırılır. İki veya üç yanık, fovea’dan yeterince uzağa, kritik olmayan bölgeye uygulanır ve yanığın yoğunluğu ölçülür. İdeal bir yanık, donuk fundi’de sarı ve pigmentli hastalarda gri olmalıdır. Eğer beyaz ise veya saran bir ışık halkası hızla gelişiyorsa, yanık ço

Yorum Yaz

Yorum Yazabilmek İçin Lütfen Giriş Yapın.