Bütün Canlıların Yaşayan En Küçük Biriminin Hücre Olduğunu Biliyoruz. Onu İ

12 Temmuz 2007



Bütün canlıların yaşayan en küçük biriminin hücre olduğunu biliyoruz. Onu ilk defa 1665 yılında ingiliz bilim adamı Robert Hook, mantar dokusunda gözleyerek, boşluk anlamına gelen “hücre” sözcüğünü kullanmıştır. Görülen, esasında hücrenin yalnız ölü çeperiydi. Bohemyalı fizyolog Purkinje, hücrenin iç kapsamına protoplazma adını vermiştir. Hücre bilimine ilişkin ilk yayınlar, bitkilerde Schleiden (1838) ve hayvanlarda Schawann (1838) île başlar. Bu iki araştırıcı “Hücre Kuramı” nin kurucuları olarak kabul edilirler.

Hücreler ya tek başına (birhücreliler ya da protistler olarak bilinen bakteriler, protozoa, birhücreli mantarlar ve algler; keza yüksek bitki ve hayvanların sperma ve yumurtaları) ya da çok hücrelilerde olduğu gibi belirli bir görevi yapmak için farklılaşmış hücre grupları (= dokular) halinde bulunur. Tek bir hücre halinde yaşamım sürdüren canlılara l. düzendeki canlılar, belirli görevleri yüklenmek için farklılaşmış hücrelere sahip canlılara da II. düzendeki canlılar denir, ikinci düzendeki canlıların hücreleri organizma dışında ancak doku kültüründe yaşamını sürdürebilir ve çoğalabilir. ilk doku kültürünü Amerikalı Rass Harrison (1907) semender hücreleriyle yapmayı başarmıştır. Çok hücrelilerin hücreleri birbirine hücre arası madde ile bağlanmıştır (kemik ve kıkırdakta olduğu gibi) ya da bu madde aracılığıyla ilişkidedir (kan ve lenfte olduğu gibi).

Bazı organizmalar hücre arası maddeye ve hücre sınırına sahip değildirler. Bununla beraber bir canlı birimi olarak tanımlanırlar, örneğin amiplerden Pelomyxa palustris, güneşsilerden (Heliozoa) Actinosphaerium eichorni, birçok ışınlı (Radiolaria), delikli (Foraminifera), Opalinidae, bazı silliler (Ciliata), Myxosporidae ve bitkilerden Siphonales, keza mantarların hifleri bu durumdadır. Bu organizmalar “Ç o k Çekirdekliler” yada “H ü c r e s i z l e r” olarak adlandırılır.

Hücrenin Evrimsel Gelişimi:

Bundan yaklaşık 2-3 milyar yıl önce, bir gen-bir enzim şeklinde kendini eşleyebilen ilk molekül meydana gelmiş ve bir zaman sonra bu molekül lipit ve protenoid moleküllerinden oluşmuş bir koaservat keseciğinin içine girerek ilkin hücreyi yapmıştır. Başlangıçta oksijensiz ortamda yaşayan bu hücre, çevredeki birikmiş besin maddelerini kullanıyordu (heterotrof canlılar). Bir süre sonra besin maddesi azaldı ve bu arada anorganik yoldan sentezlenmiş porfirini bünyesine alarak (klorofil oluşumu) kademe kademe Su + CO+ güneş ışığından organik maddeleri sentezleyebilen canlılar (ototrof canlılar) ortaya çıktı. Bu sentezlemenin yan ürünü olan serbest oksijeni, metabolizmalarının etkili bir maddesi olarak kullanan hücrelerden bir kısmı, diğer hücrelerin içine girerek onlarla ortak yaşamaya başladı. Bu arada hücre içine giren simbiyont hücre, birçok hücresel yapısını yitirerek mitokondriye dönüştü. Yalnız, kendi başına (otonom) bölünme yeteneğini ve özel DNA’sını bugüne kadar saklayabildi. Keza bu arada ilkin denizde burgu gibi dönerek hareket eden bazı bakteriler (Spirochaeta benzeri) bu hücrelerin üzerine yapışarak onlara hareket olanağı vermiş ve bu arada onların yakaladığı besin maddelerine de ortak olmuştur. Bir zaman sonra aralarındaki ilişki ortak yaşama (simbiyozise) dönüşerek, yapışan hücreler kamçı ve silleri oluşturmuştur. Nitekim bu bakterilerin (bugün yaşayanlarının) yapısı, kamçıların ve sillerin yapısına benzemektedir. Lizo-zom, ribozom ve çekirdek zarının da simbiyotik ilişkilerle dışarıdan girdiğine ilişkin kanıtlar. Sonuç olarak modern hücre, birçok ilkin hücrenin ya da hücre benzeri varlığın simbiyotik ilişkiler içinde bir araya gelmiş karmaşık bir kombinasyonudur. Hücre inceleme yöntemleri

Canlılarda gözlem

Hayvanı ya da onun bir kısmım, doğal ortamda bulunduğu şekilde mikroskop altında incelemektir. Kimyasal maddeler kullanılmadığından, hücre yapısında ve şeklinde herhangi bir değişme olmamaktadır. Doku kültüründe de hücreleri in vitro olarak incelemek mümkündür, in Vitro Latince tüpte ya da cansız ortamda demektir.

Vital boyama

İncelenecek kısım, zehiri az olan bir boyanın çok fazla sulandırılmış çözeltisi içine konur. Vital boyamada kullanılan boyalar, asidik ve bazik olmak üzere ikiye ayrılır. Çeşitli organeller çeşitli boyaları emerek görünür duruma geçerler. En çok kullanılanlar nötr kırmızı, metilen mavisi, yanus yeşili vs. (1/10.000 veya 1/30.000 defa seyreltilmiş)’dir. Hücre, bu yöntemle canlı olarak daha ayrıntılı incelenebilmektedir. Bu yolla 5-10 mikron, en fazla 30-60 mikron kalınlığında kesilmiş doku preparatları cansız olarak incelenebilir.

Elektron mikroskobu ile inceleme

En iyi ışık mikroskobunda obje 2.000 defa büyültülebilir. Bu durumda 0.2 mikrondan büyük olan cisimler mikroskop altında görülebilir. Çünkü görünür ışığın dalga boyu en kısa olanı, mor ışındır (0.4 mikron kadar). En uzun dalga boyu da 0.8 mikronla kırmızı ışındır. Kullanılmakta olan ışının dalga boyunun ancak yansı kadar büyük olan cisimleri görmek mümkündür. Bu da mor ışının en fazla yarısı kadar olabilir.

Elektron mikroskobunda ışık dalgaları yerine hızlı elektronlardan yararlanılmış, mercek yerine de manyetik alanlar kullanılmıştır. Bu suretle 200.000′den daha fazla büyültme elde etmek mümkün olmuştur (yani 0.001 mikron = 10 A°’lük ayrıntıyı saptayabilecek güçte). Ancak insan gözü elektronları göremediğinden, elektronların floresan bir ekrana yansıtılması ya da fotoğrafının çekilmesi gerekir. Bu yolla hücrenin ayrıntılı yapışı ve virüsler incelenebilmektedir. Elektron mikroskobunda ultramik-rotomlarla hazırlanmış 0.2 mikron kalınlığındaki preparatlar incelenebilir. Bu prepa-ratlara kontras (gölge) vermek için altın gibi ağır atomlar kullanılır. Elektron mikroskobunda yüksek vakum ve sıcaklıktan dolayı, bugüne kadar canlı herhangi birşey incelenememiştir.

Diğer Yöntemler

Hücre, su kıvamında olduğundan, genellikle kontraslar görülmez. Bunun için hücre bir tesbit edici (fiksatif) içerisinde süratle öldürülür ve çeşitli boyalar kullanıla-rak organeller arasındaki kontraslar çok belirgin olarak ortaya çıkarılır. Bu yöntemle incelemede birçok kolaylıklar varsa da hücre öldüğünden yapısının değiştiği açıktır. Son zamanlarda bulunan “Faz Kontrast” mikroskobu ile bu sorun bir derece çözülmüştür. Çünkü hücrenin farklı kısımlarının, ışığı farklı kırmaları, bir renk ayırımına dönüştürülür; yani kontrastı sağlanır. Enterfrens mikroskobu da hücrenin farklı yoğunlukta olan kısımlarım (bir prizma gibi ışığı farklı kırdığından) renkli görüntü olarak verir. Bu yolla inceleme aynı zamanda hücrenin farklı kısımlannın kimyasal anaJizlerinin yapılmasına da olanak sağlamaktadır.

Hücrenin şekli ve büyüklüğü

Serbest kalan bir hücre kendini korumak amacıyla genellikle, yüzey geriliminin etkisi altında, küre şeklini alır. Çünkü hacmi en büyük; fakat yüzeyi en küçük olan geometrik şekil küredir. Hücreler, türden türe, dokudan dokuya ve yaptıkları işe göre şekil bakımından büyük değişiklikler gösterirler.

En küçük boylu hücreler gametler, bakteriler ve parazit bir hücrelilerdir. Bu hücreler 0.2-0.5 mikron (1 mikron = 0.001 mm.) çapındadır. Bazı silliler ve delikliler gözle görülebilir {Gregarin’w 1.5 cm. kadar olabilir). En büyük hücre, kuş yumur-tasıdır. Bugün yaşayanlardan devekuşunun yumurtası ile 100 sene önce Madagaskar’da yaşayan Aepyornis kuşunun 8 litrelik yumurtası bilinen en büyük hücrelerdir. Bilinen en uzun hücreler ise aksonlarıyla beraber 1 m. kadar uzunluktaki bazı sinir hücreleridir.

Hücrenin işlevi île ilgili ya da diğer hücrelerle ilişkisini sağlayan yapılardır. Hücrenin yaptığı işe ve bulunduğu yere göre farklılıklar gösterirler.

Mikrovillus

Özellikle emme görevi fazla olan hücrelerde, örneğin bağırsak epitelinde, hücre dış yüzeyini artırmak için, hücre zarının bir miktar sitoplazma ile beraber dışarıya doğru meydana getirdiği, parmak şeklinde 0.6-0.8 mikron uzunluğunda 0.08-0.1 mikron kalınlığındaki çıkıntılardır, ince bağırsakta her bir hücrede aşağı yukarı 3000-4000 mikrovillus bulunmaktadır. Bu mikrovilluslar (çoğulu mikrovilli) makromolekülleri parçalayan ve hücre içine taşıyan enzimleri taşır.

Sıvı geçirimine (alışverişine) kuvvetlice özelleşmiş (ozmoregülasyon yapan) hücrelerin taban kısımları (böbrek Malpiki tüplerinin epitel hücreleri) kaide labirenti denen birçok kıvrım ve girinti taşır. Epitel hücrelerinin alt kısmındaki “Kaide Zarı” hücre dışı bir yapı ve salgıdır; epitel hücrelerini alttaki bağ dokudan ayırmaya yarar.

Fagositoz (Phagocytosis), Pinositoz (P/nocytosfs) ve Eksositoz (Exocytosis) ya da Eksturziyon (Extursion)

Amikronlar, yani iyonlar ve moleküller (10 A°)rezorpsiyonla, submikronlar (10 A° - 0.1 mikron) athrocytos’la (atrositozla), mikronlar (0.1 mikrondan büyük) fagositozla alınırlar. Su gibi küçük moleküllerin birçoğu hücre içerisine ozmozla, hücre zarının değişmesine gerek kalmadan girebildikleri halde, bir kısmı, örneğin potasyum ve sodyum tuzları, diğer makromoleküller gibi pinositoz meydana getirir. Büyük moleküllerin ve bazı katı cisimlerin hücre içine alınabilmesi için hücre zarının yapısal olarak değişmesi gerekir. Sitoplazma, büyük bir cismi, yalancı ayak ya da içeriye çöken bir kesecik (vezikül) meydana getirerek hücre içine alabilir. Ayrıca hücre yüzeyinde bir takım yarık ve çukurlar vardır. Bunların içindeki sıvı ve katılar boğumlanmak suretiyle bir kesecik şeklinde sitoplazma içerisine alınır, işte bu yolla sıvı maddelerinin hücre içerisine alınmasına pinositoz (Yunanca, pinein = içmek demektir) katı maddelerin alınmasına fagositoz (Yunanca, phagein = yemek demektir) her ikisine birlikte “E n d o s i t o z” denir. Bu yolla, normal olarak bimoleküler yağ tabakasından geçemeyecek moleküllerin hücre içine nasıl girebildikleri anlaşılır. Hatta aç bırakılan bir amip % 1′lik globülin çözeltisinden, iki saat içinde vücudunun % 30-40′ı kadar molekülü bu şekilde alma gücüne sahiptir. Fagositozla meydana gelen kesecikler diğerlerinden çok daha büyüktür, içeriye giren bu kesecikler lizozomlarla çevrilerek, onların zarlarıyla kaynaşır ve böylece kesecik içerisindeki maddeler diffüzyonla zardan geçecek kadar küçük moleküllere parçalanır. Sadece su ve küçük moleküllü diğer temel besin maddelerini içeren kesecikler bu diffüzyonla gittikçe küçülür ve bir zaman sonra da çevresini saran zar birimiyle birlikte kaybolur. Bununla beraber içerisinde sindirilemeyen artık madde içeren kesecikler Golgi aygıtı (GA)’nın sisternlerine kaynaşır ve daha sonra anlatacağımız gibi ekstruziyon dediğimiz yolla dışarıya atılır.

Buna karşın Golgi aygıtında oluşan salgılar ve sindirim artık maddeleri zar biriminden meydana gelmiş kesecikler içinde, zara doğru hareket ederek, orada hücre zarına birleşir ve kaynaşırlar. Daha sonra dışanya doğru balon yapan çıkıntılarla (meydana gelen delikten) atılırlar; buna “Ekstruziyon” (latince Ex= dışarı, trudere= atmak) ya da “E k s o s i t o z” denir. Kesecik plazmalem-maya yuvarlak bir testi gibi bağlanır. Testinin ağzı dışarıya dönüktür.Bu testi şeklindeki kesecik, içerisindeki sıvı aktıkça küçülür ve bir zaman sonra da kaybolur. Keseciğin de hücre zarına homolog olduğu varsayılmaktadır. Eksositoza örnek, insülinin kana verilişi gösterilebilir.

Hücreler Arası Bağlantılar (Juncturae Cellularum)

İki hücrenin birbirine bağlanmasını ve haberleşmesini sağlayan özel bölgeler olarak tanımlanır. Bu bağlanma çeşitli dokularda çeşitli şekillerde bulunur. Sinir, duyu ve bazı kas hücrelerinde sinapsis adım alır. Hücreler arasındaki bağlanmayı şu gruplara ayırabiliriz

Sıkı Bağlantı: Dış etkilerden vücudu koruyan hücrelerde bulunur. Epitel hücreleri arasındaki kuvvetli bağlantı bu tiptir. Hücreler arasında aralık yok gibidir. Yalıtma özelliği genellikle fazladır.

Desmozomlar: Aynı işlevi yürüten hücrelerin ortak hareket etmelerini ve birbirine yapışmalarını sağlayan sitoplazmik uzantılardır. Çoğunluk simetriktirler. Bu uzantılar küçük bölgeler halinde olabilir (düğme desmozom) ya da hücrenin etrafını çepeçevre sarar (kemer desmozom). Mekanik etki altında kalan hücrelerde düğme desmozom daha fazladır. Esasında hücre bağlantıları, hücrelerin serbest yüzünden derinlere doğru farklı bölgeler gösterir.

Geçit Bölgeleri: Bir zigotun (çok hücrelide) gelişerek, aralarında düzenleme ve işbölümü oluşmuş, yapısal olarak farklılaşmış hücreleri meydana getirmesi, hücreler arasındaki bilgi iletimi ile mümkün olmaktadır. Bu iletişim madde ve elektrik iletimi şeklinde olabilir. Nitekim 1000 dalton büyüklüğündeki moleküllerin, hücreler arasında bulunan 10-20 A° çapındaki geçit bölgelerinden iletildikleri saptanmıştır. Bu geçitler iki hücrenin birbirine yaklaştıkları bölgelerde oluşan borucuklardır. Boruculardan, iyonların, şekerlerin, amino asitlerin, nükleotitlerin, vitaminlerin, steroyit hormonların ve siklik adenozin mono fosfatın geçtiği saptanmıştır. Keza elektriksel uyarımlar da diğer hücrelere bu geçit bölgelerinden iletilir, iyonların geçiş sırasında dış ortama sızmaması için geçiş borucuklarının geçirgenliği normal hücre zarına göre 1000-10.000 defa azaltılmıştır, iki canlı hücre yapay bir ortamda yan yana getirilirse, çok kısa bir sürede (saniyeler içinde) hücreler arası ulaşım bölgelerini oluştururlar. Hücre zarının üzerindeki özel almaçlar, aynı kökenden gelen diğer hücrelerin tanınmasını sağlarlar, örneğin embriyonik evrede karmakarışık edilen hücreler, geldikleri doku çeşidine göre birbirlerini tanıyarak bir araya gelebilirler.

Hücreler arası ulaşım bölgelerinin oluşumunun ve geçirgenliğinin miktarı Ca + + iyonlarının hücre içindeki azlığına (normal olarak hücre içindeki derişimi düşüktür) ve hücre yüzeyindeki glikoproteinlerin fazlalığına bağlıdır. Hücreler arası bölgede Ca + + ve Mg + + derişiminin fazla olması, geçit tüpcüklerinin yalıtılmasına, bu da hücreler arası geçirgenliğin artmasına neden olur. Ca + + iyonları hücre zarına tutunarak belirli iyonların taşınımını önler, iki hücre arasında bağ meydana gelince, borucuğun açıldığı yerdeki Ca + + iyonları (borucuk içinde kalan ) hücre zarından aynlarak sitoplazma içine girer ve çoğunlukla da aktif pompalanma ile dışarıya atılır (ATP kullanılarak). ATP sentezi önlendiğinde, hücreler arasındaki bağ yerlerine tutunmuş Ca4′ + iyonları atılmadığı için hücreler arasındaki geçirgenlik (bağ yapma gücü) azalacak ve hücreler birbirinden ayrılacaktır.

Hücre arası geçitlerin en önemli görevi, embriyonik gelişim sırasında, bazı maddelerin hücreden hücreye bu yolla geçerek, doku ve hücre farklılaşmasını sağlamasıdır. Hücre çoğalmasının da bu yolla sınırlandığına ilişkin gözlemler vardır. Kanser hücresinde bu bilgi iletimi olmadığı için (büyük bir olasılıkla hücreler arası bağlantılar yok edildiği ya da oluşmadığı için), komşu hücrelerin durdurucu etkisini alamamakta ve sınırsız çoğalma sürecine girerek kötü huylu tümörleri yapmaktadır. Nitekim kanser hücreleri birbirine ya da normal hücrelere temas etse dahi bölünmesine devam eder; buna karşın normal hücreler komşu hücrelere ya da kanserli hücrelere temas ederse, bölünmesini durdurur ya da sınırlar.

Siller (Cilia cellularia)

Bazı hücrelerin yüzeyinde sil (kirpik) ve kamçı olarak isimlendirilen yapılar vardır. Hareketli olanlara “Kinetosilia”, hareketsiz olanlara “Stereosilia” denir. Stereosiller, kinetositlerden uzundur ve kinetozom (dip taneciği) taşımazlar. Şillerin uzunluğu 5-10, kalınlıkları 0.2-0.25 mikrondur. Bulundukları hücrede sayıları çok fazladır. Flagellumlar (kamçılar) bulundukları hücrede ya bir ya da birkaç tanedir; uzunluğu 150 mikrona ulaşır, insandaki spermanın kuyruğu kamçı yapısındadır; uzunluğu 40-50 mikrondur. Çok sayılı kamçıya ependym (omurgalı hayvanların merkezi sinir sistemini örten epitel) hücrelerinde rastlanır.

Bütün titrek siller ve kamçılar hemen hemen aynı yapıya sahiptir. Enine kesitte 11 adet boyuna uzanan mikrotubulustan meydana geldiği görülmüştür. Bunlardan iki tanesi ortada yer alır (Diplomikrotobulus Sentralis), diğer 9 tanesi 2′li mikrotubuluslar halinde çevreye sıralanmıştır (Diplomikrotubulus Periferiki). Ayrıca bir üçüncü mikrotubulusa ait olduğu sanılan ve belirli yönde yer almış çıkıntılar vardır. Kamçı ve Şiilerin enine kesitinde, ortadaki filamentum aksiyaleyi oluşturan kısım bu fibrillerdir. Bunun etrafında bir matriks kısmı ve en dışta da plazmalemma bulunur. Gerek siller gerekse kamçılar hücre dışında (Pars Ekstrasellularis) ve hücre içinde (Pars interselularis = Korpuskulum Bazale) kalan iki kısıma ayrılmıştır. Hepsi bir taban taneciğinden çıkmıştır (Bazal Granula). Bu taneciğe sinilerde Kinetozoma, kamçılılarda Blefaroplast ve çok hücrelilerin spermasında (kuyruk taneciğinde) Proksimal Sentriyol denir. Şillerin ve kamçıların bu taban taneciği ile bağlantıları kesilirse, hareket yeteneklerinin yitirildiği görülür. Şiller arasındaki eşgüdüm ilginçtir. Bir sildeki impuls diğer bütün Şillere, hatta komşu hücrelerdekine kadar geçerek, hepsinin belirli bir düzen içerisinde hareket etmesini sağlar. Kendi başlarına (otonom) hareket etme yetenekleri vardır, örneğin, ölen bir insanın, burun mukozasındaki ve böbrek kanallarındaki siller öldükten 2-3 gün sonra dahi hareketlidir. Kurbağaların, memelilerin ve yumuşakçaların ışığa karşı duyarlı hücreleri (çomakçılar ve koniler), sölenterlerdeki knidositler değişikliğe uğramış bir sildir.

Daha önce ışık mikroskobuyla varlığı saptanmasına karşın, elektron mikroskobunun bulunuşundan sonra, ayrıntılı yapısı kısmen açıklanabilmiştir. Kalınlığı en fazla 120 A° (1 angström = 1/10.000 mm.) dur. Protein, yağ ve az miktarda karbonhidrat moleküllerinden (özellikle memelilerde) meydana gelmiştir. Hücre zarının yapısı hakkında ilk bilimsel model Danielli ve Dawson tarafıdan ortaya konmuş ve birçok biyolog tarafından uzunca bir süre benimsenmiştir. Bu modele göre hücre zarının ortasında bir fosfolipit (60 A° kalınlığında) ve bunun her iki tarafında da birer protein tabakası (30 A° kalınlıklarında) bulunur. Buna “Zar Birimi” denir.

Danielli ve Dawson modelinin, hücrenin işlevsel bir parçası olan hücre zarının işleyişini tam olarak açıklayamaması, bu konuda yeni modellerin geliştirilmesine neden olmuştur, öyleki hücre zarının, iki tarafında protein, ortada fosfolipit tabakasından ibaret bir yapı olmadığı; bir lipit denizinde yüzen, proteinden ve glikoproteinlerden yapılmış, almaç denen özel bölgelerle dışarıya açılan bir “Mozaik Zar Modeli”nden oluştuğu anlaşılmıştır. Mozaik Zar Modeli 1966 yılında Singer ve Lenard tarafından ortaya çıkarıldı, ancak 1972 yılında ayrıntılı olarak yayınlandı. Bu zar modeli ya da birimi tüm hücrelerin dış zarında ve içteki organellerinin zarlı kısımlarında (mitokondri çeperi, golgi, endoplazmik retikulum, çekirdek zan gibi) benzerdir.

Zarın yapısındaki lipitler çoğunluk fosfolipitlerdir ve zarın orta kısmında iki tabakalı olarak bulunur. Bir tabakadaki fosfolipidin suda erimez lipofil (apolar) kutbu (yağ asitlerini taşıyan polarize olmamış kutbu) öbür tabakadaki fosfolipidin lipofil kutbuna dönüktür. Dolayısıyla ışınsal bir şekilde lipofil kutuplar karşıkarşıya gelmiştir. Suda eriyen hidrofil (polar) kutupları ise dışa dönüktür. Bu tabakalar, polipeptitterden meydana gelmiş bloklarla ya da adacıklarla kesilmiştir. Bu haliyle hücre zarı, içinde proteinlerden yapılmış adalar taşıyan bir lipit denizi gibi görünür.

Hayvansal hücrelerin dış yüzü, hücre zarında bulunan nöraminik asidin iyonize olmuş karboksil grubundan dolayı eksi yüklüdür. Nöramin, nöraminidaz enzimi ile zardan koparılırsa, eksi yükün büyük bir kısmı yitirilir.

Zar proteinleri, yerleşim durumlarına göre iki kısma ayrılır. Bir grup protein, yağ tabakasının her iki yüzündedir. Bunlara “Ekstrinsik Proteinler” denir. Bir kısmı da yağ tabakasının içine gömülmüştür; dış kısımları yağ tabakasının iç ya da dış yüzüne açılabilir. Bunlara da “l n t r i n s i k Proteinler” denir. intrinsik proteinlerden rodopsin retinanın çomakçıklarındaki taraklarda bulunur. Karanlıkta 1 /3′ü oranında. aydınlıkta ise 1 /2’si oranında zar içine gömülür. Ekstrinsik proteinler sulu ortamla temas halinde oldukları için hidrofilik amino asitleri, intrinsik proteinler ise bir tarafları ile yağ tabakasına gömülü oldukları için bu kısımlarında hidrofobik amino asitleri, diğer tarafları sulu ortamla temasta olduğu için de o taraflarında hidrofilik amino asitleri taşırlar.

Memeli hücrelerinde, özellikle alyuvarlarda, intrinsik proteinlere bağlı olarak karbonhidratlar bulunmuştur. Karbonhidratlar, hücre zarında glikoproteinler ve glikolipitler halinde bulunurlar ve zar yüzeyinin, türlere hatta hücre gruplanna ilişkin özgüllüğünü sağlarlar. Organellerin zarında karbonhidrat bulunamamıştır. Hücre yüzeyinde ince bir film halinde bulunan glikoproteinler hücreye antijen özelliği verirler. Bunlar virüs almacı olarak da kullanılırlar. Alyuvarlardaki mukopolisakkaritler antijen özelliğinin yanısıra, kan gruplannın oluşumunu da sağlar. Bu karbonhidrat gruplarının bozulması (kanserleşme) ya da bir çeşit aşınması, yani hücre zarının ketleşmesi, yaşlanmaya yol açar. özellikle kanserleşmede hücre yüzeyi daha fazla eksi elektrik yüklü olur.

Çok hücrelilerde hücrelerin birbirine teması bazı bilgilerin aktarılmasına, örneğin hücre bölünmesinin durdurulmasına “Kontak inhibisyon”, morfo-genetik hücre hareketlerinin meydana gelmesine, büyümenin düzenlenmesine neden olur. Kontak inhibisyona güzel bir örnek de, plazmodyumun (sıtma etkeni) eritrositleri tanımasıdır. Bu tanımayı glikokalikslerle yapar. Diğer birçok hücre paraziti aynı yöntemi kullanır.

Hücrenin iç ortamını, dış ortamdan ayıran ve her iki ortam arasındaki madde alışverişini düzenleyen hücre zarının yapısı büyük bir olasılıkla sabit değildir. Yağ ve protein molekülleri belirli sınırlar içinde hareket eder. Bu hareket içe ve dışa doğru olmaktan ziyade yanlara doğrudur. Hücre zarının yapısal değişimi, taşıdığı doymuş ve doymamış yağ moleküllerinin miktarına bağlıdır. Zar, genellikle vücut sıcaklığında akıcı olan doymamış yağ moleküllerini içerir. Zar yüzeyinde mozaik şeklinde bulunan protein ve glikoprotein adacıkları, etrafını çeviren bir sıralı yağ molekülleri ile sıkıca bağlanmıştır (bu ikisinin arasında hareket meydana gelmez). Fakat diğer yağ molekülleriyle bağlantısı gevşektir.

Hücre zarının biyolojik etkinliğini değiştiren birçok madde, örneğin karsinojen (kanserleşmeye neden olurlar) maddeler, bazı hastalıkların ortaya çıkmasına neden olmaktadır.

Hücre zarının enine kesitlerinde, boyları 75 A0 kadar olabilen bazı kanalların, dış yüzeyden iç yüzeye kadar uzandığı saptanmıştır. Elektron mikroskobuyla yapılan son çalışmalarda, hücre zarının, Golgi aygıtının bir ürünü olduğu saptanmıştır. Golgi aygıtından kesecikler şeklinde sürekli meydana gelen zar akımı, hücre zarının kısmi onarımında ve hücre bölünmesinden sonra hücre zarının büyümesinde kullanılır. Hücre zarında çekirdek zarında bulunan porlar bulunmaz. Hücreye giren besinleri ve hücreden çıkan artık maddeleri; zarın geçirgenliği, üç tabakalı moleküler dizilişi ve özellikle proteinden oluşmuş almaç (reseptör) kısımları saptamakla beraber, elektriksel yükün de bu giriş-çıkışta büyük bir önemi olduğu varsayılmaktadır. Hücre içi ile dış ortam arasındaki elektrik potansiyel farkı (m V düzeyinde), bazı maddelerin içeriye ve dışarıya pompalanmasını kolaylaştırır.

Bir amip ya da silli hayvan yaralanırsa; bu yara yeni bir zarla hemen kapatılır. Bu yeni zara plazmalemma denir. Plazmalemmayı hücre arasına salgılanan maddelerle ya da bir çeşit hücre iskeletini oluşturan hücre dışındaki daha katı selüloz (bitkilerde) ya da mukopolisakkarit ve albuminoid yapılarla karıştırmamak gerekir.

Hücre, yoğunluğu az olan bir sıvı içerisine (hipotonik) konursa şişer ve sonunda patlar, buna “Hemoliz” (genellikle alyuvarlarda hemin hücre dışına çıkmasında kullanılır); yoğunluğu fazla bir sıvı içerisine konursa, su kaybederek büzülür, hücre zarı bitkilerde selüloz duvardan ayrılır ve sonunda yine patlar buna da “Plazmoliz” denir.

İkel bitkilerde ve hayvan hücrelerinin büyük bir kısmında bulunur, interfazda kural olarak çekirdeğin yanındadır. Üç ile beş milimikron uzunluğunda, birbirine dik, ER ve ribozom taşımayan, ortası saydam; çevresi her biri 9 mikrotubulus tripletinden oluşmuş iki silindir halinde görülür. Sayıları çoğunluk iki tanedir (Dip-losoma); bazı hücrelerde çok sayıda olabilir. Sentriyoluma, etrafındaki sentroplazma ile birlikte “C e n t r o s o m a” denir. Bölünme başlarken, kutup ipliklerinin (iğ iplikleri) merkezinde bulunduğu için “C e n t r i o l = Sentriyol” adım alır. Hücre bölünmesi sırasında sentriyol de ikiye bölünerek, her biri bir kutba gider ve aralarında oluşan iğ ipliklerine, çekirdek zannın dağılmasıyla ortaya çıkan kromozomlar takılır. Fakat bölünme ne basit bir ikiye bölünmedir ne de DNA replikasyonunda olduğu gibi bir kontak sentezlenmedir. Belki eski kalıbın doğrudan doğruya okunmasıdır. Yeni sentriyolün mikrotubulusları, genellikle eski sentriyolden 100 nm. kadar uzaklıkta ve ona dik olarak ortaya çıkar. Büyük bir olasılıkla bilgi, var olan sentriyolden, oluşmakta olan kopyasına herhangi bir şekilde aktarılmaktadır. Fakat bu bilgi aktarılma düzeneğinin nasıl olduğu açıklanmamıştır.

Spermanın orta kısmında bulunan sentriyol kamçının kaide taneciği olarak görev yapar.Keza Sillerin ve kamçıların kaide taneciği de sentriyollere homologtur (kökendeş) ve onlardan doğrudan doğruya türemiştir. Keza duyu hücrelerindeki almaçın yapısına katılan birçok oluşum da sentriyollerden meydana gelmiştir.Tüm bu organeller bilgi aktarımı ile birbirinden doğrudan doğruya oluştuğuna göre, acaba, sentriyol ya da kaide taneciği yeniden meydana getirilebilir mi? Bu olanak partenogenetik çoğalan denizkestanesinin yumurtalarında gösterilmiştir. Olgunlaşma bölünmesi sırasında, sentriyolünü yitiren denizkestanesi yumurtası, sitoplazma içerisinde yeniden bir sentriyol meydana getirerek, spermanın getireceği sentriyolün iğ ipliklerindeki yerini almaktadır. Her ne kadar zorunlu durumlarda kendi kendine böyle otonom bir üretim gözlenmişse de, bugüne kadar ne sentriyolde ne de kaide taneciğinde DNA’ya rastlanmamıştır. Hayvansal ve bitkisel birhücrelilerdeki ve çok hücrelilerdeki sillerin, kamçıların ve kaide taneciklerinin mikrotubulus sayısı, hayret edilecek derecede birbirine benzerdir ya da aynıdır. Bu gözlem, adı geçen organların monofiletik olduğunu (aynı kökten geldiğini) kanıtlayabilir. Genellikle formülleri (9+2) ya da (9+0) şeklindedir. Sentriyolün esas görevi, çevresindeki mikrotubulusların oluşumunu sağlamak, kendisini çoğaltmak ve iğ ipliklerini meydana getirmek için organize etmektir. Kaide tanecikleri içindeki mikrotubulusların da doğrudan bunlardan meydana geldiği saptanmıştır. Sentriyolün, kromozomun anafaz hareketlerine katılıp katılmadığı bilinmemektedir. Buna karşın kaide tanecikleri sil hareketleri için bulunmak zorundadır.

Bazı kitaplarda iğ ipliklerinin kasılgan olduğu belirtilerek, bazı maddelerin katılmasıyla kısalıp uzadığı ve buna bağlı olarak sentromerine bağlı olduğu kromozomu kutuplara doğru kaydırdığı savunulmaktaysa da, bunu kanıtlayan herhangi birşey bulunamamıştır.

MiKROTUBULUSLAR VE MiKROFİLAMENTLER

Sitoplazmanın farklılaşmasıyla oluşan 10-25 nm. (10-9 m. = nanometre) çapındaki borucuklardır.Yapıtaşları, molekül ağırlığı 40.000 olan glo-büler bir proteindir. Bu proteine “T u b u l i n” denir. Tubulin monomerelerinin her birinin çapı 4-5 nm.’dir. Bunlar birbirine, en azından, belirli mikrotubuluslarda (örneğin iğ ipliklerinde), tekrar çözülüp ayrılacak şekilde bağlanmıştır (polimer yapmışlardır). Zincirler, büyük bir olasılıkla, birbirine, “D y n e i n” denen, diğer bir proteinle bağlanmıştır. Bu sonuncu protein, tubulusların yanlara doğru yaptıkları çıkıntının materyalini oluşturur ve kas filamentleri arasındaki enine bağların işlevini görür. Birçok durumda 13 tubulus zinciri bir borucuk oluşturmak için birleşmiştir. M i k rotu buluşla r (çoğulu mikrotubuli) yani borucuklar da birbirlerine ikili ve üçlü bir şekilde bağlanmıştır. Böylece tüm zincir dizileri bir arada tutulmuştur.

Mikrotubuluslar, hücrede birçok farklı görevi yüklenmiş ve buna ilişkin olarak da bazı yapısal değişikliklere uğramıştır. Hücrenin yapısal değişikliğinde (morfogenezinde) büyük önemleri vardır. Hücre bölünmesinde görev alan iğ ve kutup ipliklerini yapar ve keza sinir liflerindeki aksonların içinde boydan boya uzanır. Daha önce de değindiğimiz gibi hayvanlar ve az da olsa bitkiler aleminde bulunan sil ve kamçı, keza güneşsilerin (Heliozoa) yalancı ayaklarındaki eksen çubuğu mikrotubulusların katılmasıyla oluşmuştur. En önemlisi, bunların,sentriyol ve türevlerini yapmasıdır. Bir alkoloyit olan “C o l c h i c i n” (= karçiçeği özütü), tubulinle stökiyometrik (belirli oranlarda) olarak birleşir. Bu birleşme mikrotubulusların bütünlüğünü bozar (örneğin, iğ ipliklerini). Buna karşın sil mikrotubulusları bu maddeye dirençlidir. Mikrofilamentler, aktin ve diğer proteinlerden yapılmış 7 nm. çapındaki iplikçiklerdir. Bunlar hücre hareketinden ve sitoplazma akıntılarından sorumludurlar. Sitokalazin ile bloke (felç) edilebilirler.

Çimen eker gibi beyin hücresi ekilecek

Bilim adamları, tahrip olmuş beyin hücrelerinin yerine, yeni hücreler koymak için çalışmalar yapıyor. Bir darbe ya da omuriliğindeki bir zedelenmeden dolayı beyinde zarar gören hasarlı hücrelerin yerlerine, zaman içinde çoğalan yeni hücreler eklenecek.

Amerika’nın tanınmış üniversitelerinden Harvard Tıp Fakültesi’nde araştırma yapan bilim adamları, özel olarak beyinleri hasarlı yetiştirilmiş fareler üretti. Yapılan incelemeler sonucunda, sinir hücrelerinde hasarlar olan farelerin, uygun hücrelerle birleştiğinde beyinlerindeki hasarın gelişmeye çok müsait olduğu ortaya çıktı.

Alzheimer hastalığı ya da çocuklukta oluşan birçok beyin işlevi düzensizliğinin sebebinin de bu yayılma olduğu tahmin ediliyor.

Eğer, bu proje gerçekleşir ise, daha anne karnındaki bebek bile bu yöntem ile tedavi edilebilecek. Bebek, henüz uteroda iken, bir gen tedavisi başlatılacak.

Projeyi yürüten doktorlardan biri, beyin hücrelerini, çimen ile kıyaslıyor. “Bir çayırın bir bölgesinde çimen çıkmamış ya da çocukların verdiği zararlar yüzünden yok olmuş ise, yapmanız gereken, bu çıplak yere tekrar tohum ekmektir. İşte bizim amacımız da bu.”

Böylece, beynin gövdesindeki hücrelerden, beyinde yok olan hücreleri tekrar oluşturmak için süper-kaynaklar üretilebilecek. Bu ikinci proje, hayvanlar üzerinde denendi. Bilim adamları bir deneyde, fare ceninin beyninden hücreler alıp, dışarıdaki bir ortamda tüm hücrelerin çoğalmasını sağladı. Sonra bu gelişimini tamamlamış hücreler, başka bir farenin gelişme aşamasındaki beyninin çeşitli yerlerine aşılandı.

Bu deneylerin, insanlar üzerinde yapılacak çalışmaların habercisi. Süper-kaynakları üretecek araştırmacılar, Tay-Sachs hastaları için umut vaat ediyor. Laboratuar deneylerinde, bu tamamlayıcı hücreler, genetik bozukulukları düzeltmekte başarıya ulaştı. Hücrelerdeki siper-kaynaklar, içerdikleri terapik proteinler ile beyinde mevcut bulunmayan ve bu yüzden de rahatsızlıklara yol açan genetik kökenli rahatsızlıkları ortadan kaldırıyor

Kemik ve kıkırdak kök hücresi bulundu

Bilimadamları çok önemli bir gelişme daha sağladı. Kemik iliğinde, kemik ve kıkırdak haline dönüştürülebilen ‘gelişmemiş kök hücre’ izole edildi. Bu, yaşlanmış organların yenilenmesi yolunda çok önemli bir adım olarak değerlendiriliyor.

Bilim adamları, kemik iliğinde, kemik ve kıkırdak haline dönüştürülebilen ‘gelişmemiş kök hücreler’ izole etmeyi başardı. ABD’nin Baltimore kentindeki bir biyoteknoloji firmasında çalışan bilim adamlarının başarısı, ‘yaşlanmış organların yenilenmesi yolunda atılan çok önemli bir adım’ olarak değerlendirildi.

‘Journal of Science’ dergisine göre, Osiris Therapeutics Firması’dan Moleküler Biyolog Mark Pittenger başkanlığındaki ekip önce ‘Mesenchymal’ adlı kök hücresini izole etti. Daha sonra, kemik ve kıkırdak haline gelebilecek milyonlarca hücreden oluşan doku haline dönüştürdü. Kök hücre (MSC), yetişkinlerin kemik iliğinde bulundu.

SAKATLIKLARDA UMUT

Pittenger ve ekibi, farklı geliştirme çevreleri ve bunların kombinasyonlarını deneyerek kök hücrelerin istenilen hücreye dönüşmesini sağladı. Kök hücre enjeksiyonlarıyla çeşitli hastalık ve sakatlıkların tedavi edilebileceğini belirten Pittenger, ‘‘Örneğin yaralanan diz ve eklem yerlerinde yeni kıkırdak geliştirilebilir’’ dedi. Pittenger, kaslar için de ayrı bir çalışma yaptıklarını ifade etti.

Kök hücreler, insan vücudunun yaşam blokları olarak adlandırılıyorlar. Geçen Kasım ayında bilim adamları, embriyo dokularından alınan kök hücrelerin laboratuvarda geliştirilebileceğini kanıtlamışlardı. Ancak, bilim adamları, bu kök hücreleri istedikleri hücre biçimine dönüştürmeyi henüz başaramadılar.

Mark Pittenger, kök hücrelerin yetişkinlerin kemik iliğinde bulunması nedeniyle, embriyonik doku kullanmak zorunda kalmadıklarını ve bunun önemli bir avantaj olduğunu söyledi.

Uzun yaşayan hücreler

Kaliforniyalı biyoteknoloji firması Geron, hücreleri ölümsüzleştirmenin tekniğini bularak bilimde çığır açtı. Ancak bazı araştırmacılar ise bu hücrelerin daha sonra kanser hücrelerine dönüşebileceğinden endişeli. Nature Genetics dergisinin son sayısında bu düşünce çürütüldü ve genetik bir operasyon ile ölümsüzleştirilen insan hücrelerinin hiçbir tümör oluşturma tehlikesi olmadığı ortaya kondu. Araştırmalar sonucunda, bu değişime uğramış hücrelerin özellikleri ile kanser hücrelerinin özellikleri arasında hiçbir benzerlik olmadığı belirlendi. Geron’un araştırmacıları hücrelerin içinde bulunan biyolojik saati bulup, bu saati geri alarak deney tüpü içerisinde dokuların yaşlanmasını durdurmuşlardı.

Normal hücreler 80 bölünmeden sonra ölürken, Telomerase geni ile ömrü uzatılan hücreler 280 defa bölünüyorlar.

Güç veren genGen tedavisi farelere güç verdi. Amerikalı araştırmacı H.L. Sweeney ve ekibi, zarar görmüş kasların gelişimini sağlayabilmek amacıyla farelere özel bir gen enjekte etti. Bunun sonucunda yetişkin farelerin güçlerinin % 15 oranında, yaşlı farelerin de % 27 oranında arttığı gözlemlendi.

Genetik bilimindeki bu ilerleme, vücut geliştirme sporu ile ilgilenenler için yeni bir kolaylık oluşturabilir. Ancak araştırmacılar, bu tekniğin yaşlılıktan kaynaklanan zayıflığın hafifletilebilmesinde kullanılması gerektiğini, spor ve kozmetik amaçlar kullanılması halinde çok rahatlıkla suistimal edilebileceğini belirtiyorlar

Kilo artık sorun değil

Aşırı yağlı besinlerle kolesterol yüklemesi yapan Amerikalılar kurtuluşu soya fasulyesinde arıyor. Bugüne kadar büyük ölçüde hayvan yemi olarak kullanılan ya da sadece vejetaryenlerin yediği soya fasulyesi, doktor tavsiyesi üzerine artık halk arasında da giderek yaygınlaşıyor. Çünkü hem kolesterolü düşük, hem kanseri önlüyor, hem de kemikleri güçlendiriyor.

Amerikan Gıda ve İlaç Dairesi (FDA) bu yılın sonlarına doğru soya fasulyesinin bir yararlı yönünü daha ilan etmeye hazırlanıyor. FDA’nin soya fasulyesini de aynı lifli-kepekli yiyecekler ve sebzeler gibi kalp hastalığı riskini azaltan gıdalar listesine dahil etmesi bekleriyor.

Fazla lezzetli olmadığı için sofralardan uzak kalan soya fasulyesini yeni keşfeden Amerikalılar, şimdi bu yararlı gıdaya lezzet katmak için uğraşıyor. Gıda sanayi harıl harıl yeni soya çeşitlemeleri üzerinde çalışıyor. Daha çok Uzakdoğu’ya özgü bir besin olan soya proteininden yüksek kolesterollü gıdaların taklitleri üretiliyor. Gerçeğine pek benzemese de, soyadan domuz pastırması bile üretiliyor. Japonların bol miktarda tükettiği soya eti tofunun yanı sıra sosis ve dondurma da yapılıyor.

TEST EDİLDİ ONAYLANDI

ABD’de son 25 yıl içinde yapılan araştırmalar, soyanın kolesterol düşürücü etkisini kesin biçimde ortaya koyuyor. Bu konuda yapılmış en az 30 araştırma var. Bu araştırmalara göre 47 gramlık soya tüketimi, kolesterolü yüzde 9 oranında düşürüyor. FDA’nın iki hafta önce onayladığı, pahalı ancak kolesterol düşürücü margarin Benecol de kolesterolü aynı miktarda düşürüyor. Ancak araştırmacıları düşündüren bir nokta var: Soyanın kolesterolü neden düşürdüğünü bir türlü çözemiyorlar. Bu nedenle de soyanın sadece kolesterol düzeyi yüksek olanlara mı iyi geldiği tam olarak bilinmiyor.

Soyanın göğüs kanserini önleyici etkisi olduğu da biliniyor. Çünkü Japonya’daki kadınlar arasında ortaya çıkan göğüs kanseri oranı ABD ve diğer sanayi ülkelerine göre çok daha düşük. Ancak Japon kadınlarının soyanın yanı sıra, diğer gelişmiş ülke kadınların a göre daha bol miktarda sebze, meyve ve yeşil çay tükettiğini de unutmamak gerek.

DiKTiYOZOM (Dictyosoma) ve GOLGi AYGITI

Prof. Dr. Ali Demirsoy

Golgi aygıtı birçok alt birimlerden meydana gelmiştir. Bu birimlerin her birine diktiyozom denir (Yunanca diktiyon = ağ, soma = vücut demektir). Diktiyozomların tümü Golgi aygıtını oluşturur.

Ergin sperma ve kan hücreleri hariç tüm hayvan ve keza bitki hücrelerinde bir ya da birkaç tane bulunur. Sentezleme, özellikle salgı yapan hücrelerde iyi görülür (ipekböceğinin ipek salgı bezlerindeki hücrelerde çok gelişmiştir). Genellikle sentri-yolun civarında ve çekirdeğin üzerine yakın olarak bulunur. Düz ER’dan çok farklı değildir. Düz ER’a göre tüpcük ve lamelcikleri daha yoğun olarak içerir . Birbirinin üzerine katlanmış 5-30 kadar kanalcık (Cistern = Sisterna = Latince yağmur suyu toplayan çukur demektir) taşır. ER’dan osmium ve gümüş içeren boyalarla boyanmasıyla ayrılır, ilk defa 1898 yılında italyan bilim adamı camıüo golgi, gümüşlü boya ile sinir hücrelerinde üstüste dizilmiş plakaları tanımladığından, bu yapıya, bilim adamının ismine adanarak “Golgi Aygıtı” dendi, önemi elektron mikrosko­buyla ortaya çıktı.

Kanalcıklar GA’nın orta ve tabana yakın kısmında bulunur. Uç kısmına gittikçe bu plakçıkların ve kanalcıkların, hücre zarına doğru göç eden veziküllerle (keseciklerle) kullanılıp bitirildiği gözlenir. Özünde burada akıcı ve sürekli bir denge vardır. Bir taraftan (proksimalden) senteztenmeye başlayan maddeler uca (distale) doğru itilerek uzaklaştırılır. GA’nın zarları zar birimine benzer; fakat daha incedir (6-10 nm.). Bu ise GA’nın, ER ile hücre zan arasında bir geçit ödevi gördüğünü kanıtlar, öyle ki ER’un üzerinde sentezlenen protein, bazı maddelerin de eklenmesiyle (GA’nda) zar birimleri ya da pulcukları halinde hücre zanna iletilir ve onun yapışma katılır. GA’nda basit şekerlerden kendine özgü polisakkaritlerin sentezlendiği saptanmıştır. Böylece hücre zarının yapışma katılarak onun özgüllüğünü saptayan karbonhidrat­lar, GA’nda sentezlenmektedir. Salgının attimasından başka, hücredeki fazla suyun (birhücrelilerde) vurgan koful aracılığıyla atılması da GA’nın görevleri arasındadır. Çünkü vurgan (kontraktil) koful GA’ndan meydana gelir. Bununla beraber GA’nın hücreden hücreye değişiklikler gösterdiğim unutmamak gerekir. GA’nın sentezlenmesini ve madde yapımına katılımım biraz daha ayrıntısıyla inceleyelim:

Sindirim kanalının içinde, özellikle bağırsaklarda, kimyasal ve fiziksel etkilerden hücreleri koruyan mukus denen bir sıvı salgılanır. Bu sıvı bağırsaklarda Goblet hücrelerinden çıkarılır. Adı geçen salgı hücreleri incelendiğinde, mukus damlacıklarının, hücrede, GA’nın civarında daha sık bulunduğu görülür. GA, hücrenin taban kısmın­da yassılaşmış kanalcıkları içeren bir çanak gibi olduğu halde, hücrenin uç kısmına (distaline) gittikçe bu kanalcıkların içi mukusla dolmuş kesecikler haline dönüştüğü ve bir zaman sonra da hücre zarına ulaşarak dışarıya doğru aktığı bilinmektedir, işaretlenmiş azotla yapılan denemelerde, proteinlerin ER’da sentezlendiği, daha sonra paketlenmek üzere GA’na geldiği ve burada belki yapısımn kısmen değiştirildiği (l) bilinmektedir. Fakat her durumda, burada, her salgı hücresi için kendine özgü yapı­lışta karbonhidratların protein molekülüne eklenerek, onun hücre zanndan çıkabilmeşini (!) ve meydana gelen kompleksin salgı niteliğini kazanmasını sağladığı kısmen bilinmektedir. Çünkü salgı proteinlerinin tümü glikoprotein halindedir.

İşaretlenmiş glikoz ve sülfatlarla yapılan gözlemlerde, proteinlere şeker ve sülfat eklenmesinin GA’nda gerçekleştiği kanıtlanmıştır. Mukopolisakkaritlerin de GA’nda sentezlendiği bilinmektedir. Bu madde bir iç salgı olup kıkırdak hücrelerinin yapışma katılır. Ayrıca tüm dış salgı hücrelerinin salgı yapımının yanısıra, iç salgı hüc­relerinin (paratiroitteki glikoprotein salgısı gibi) birçok maddesinin, keza bitkilerdeki selülozun, karaciğer hücrelerinde lipoproteinferin sentezlenmesine katıldığı açık bir gerçektir. Bazı hücrelerde de lizozom granüllerini yaparak sitoplazmaya vermektedir.

Uzun zaman, pek önemli bir organel olmadığı gerekçesiyle, dikkate alınmayan GA, son zamanlarda hücre zannın özgüllüğünü saptamada önemli görev almaşı nedeniyle, dikkatleri üzerine çekti. Çünkü hücre zannın özgüllüğü karbonhidratlarla saptanmaktadır ve karbonhidratlar da GA’nda sentezlenmektedir. Bazı karbonhidratların, proteinler gibi kalıtsal denetim altında sentezlendiğine ilişkin kanıtlar vardır. Kan grupları ve immunokimyasal incelemeler bunu göstermektedir.

Karbonhidrat taşıyan proteinler ve diğer maddeler özellikle hücre yüzeyinde bulunurlar ve hücrelerin birbirlerini tanımasın) (kendi doku türünden olanlar), diğer hücrelerle ilişki kurmasını, morfogenetik hareketlerin (embriyolojik hücre hareketleri) oluşmasını sağlarlar. Birhücrelilerin konjugasyon yaparken birbirini tanıması ve birbi­rine yapışması hücre yüzeyindeki özel karbonhidratlarla olur. Embriyonik gelişim sırasında farklılaşmış hücrelerin bir araya toplanması için de bu karbonhidratlar önemlidir.

Hücre yüzeyindeki bazı glikoproteinlerin bozulmasıyla kanserleşmenin ortaya çıktığı bulununca, araştırmalar bu konu üzerinde yoğunlaştı. Virüslerin konukçu hücreleri tanıması (hücreye özgü virüsler) da bu karbonhidratlarla ya da karbonhidratlı proteinler aracılığıyla olmaktadır. Hücre içerisine endositosisle alınacak madde­lerin lizozomlarda parçalanıp parçalanmayacağı ya da hangi asamaya kadar parça­lanacağı bu endositoz zarın özgüllüğü ile saptanır. Bu zar da hücre zarından oluşur ve dolayısıyla GA’nın dolaylı denetimi altındadır.

Sonuç olarak hücreye girecek ve çıkacak tüm maddeler, hücrenin bölünmesi, gelişmesi, farklılaşması, işlevleri ve diğer hücrelerle olan ilişkileri, hücre zan tarafın-dan saptanır. Zarın özelliği de proteinlerle birlikte, karbonhidratlar tarafından sağlanır ve karbonhidratlar (glikozamin ve mannoz hariç; bunlar protein molekülüne ribozomlarda eklenir), özellikle terminal şekerler (galaktoz, fukoz ve sialik asit) protein zincirlerine GA’nda eklenir. Golgi aygıtının sistemleri ER’dan meydana gelmiştir.

Mitokondri ;Yunanca, mitos = iplik; chondros = tane, buğday anlamına gelmektedir.

Oksijenli solunum yapan tüm hücrelerde bulunur. Boyları 0.2 - 5 mikron arasında; şekli, ovalden çubuğa kadar değişir Sayıları hücre başına birkaç taneden 2500′e (karaciğer hücresinde) kadar çıkar. Genellikle 5 - 6 tanesi ucuca gelerek bir iplik şekli meydana getirir. Canlı hücrelerde incelendiğinde, şeklinin ve büyüklüğünün değiştiği, diğer mitokondrilerle birleştiği ve hareket ettiği görülür. Bakteri, yeşil alg (çekirdeksiz hücrelerde) ve memelilerin alyuvarında bulunmaz. Kalınlıkları 70 A°olan zarla çevrilmiştir içteki zar iç yüzeyin artırılması için yaklaşık 200 A^luk aralıklarla birçok kıvrım meydana getirmiştir; bu kıvrımların tarak şeklinde olanlanna “Krista ( Cristae)” (Latince, cristae tarak demektir), tüp şeklinde olanlarına da “Tubulus” (Latince, borucuk demektir) denir (Şekil 3.10). Buna göre de mitokondri tipi tanımlanır. Kristaların iki zar birimi arasındaki aralık 60 A'’dur. Dıştaki ve içteki her iki zar da, daha önce açıkladığımız, ortada fosfolipit, dışta (kısmen) bir maddesi olarak kullanan bazı bakteriler, bir rastlantı sonucu, oksijensiz soluyan ilkin hücrelerin içine girerek, onlarla ortak (simbiyoz) yaşamaya başlamıştır. Bu ortaklıktan her ikisi de yarar sağladığı için, gelişerek üstünlük kurmuşlardır. Nitekim ilkin hücreler, organik maddeleri ancak oksijensiz solunumla belirli evrelere kadar parçalayabilmektedirler (karbonhidratları sitoplazmada pirüvik aside kadar). Halbuki oksijenli solunuma geçen mitokondriler (bir zamanların bakterisi) sitoplazmadan bu son ürünü alıp, Krebs çemberine sokarak çok daha fazla enerji elde etmekte ve ener­jinin fazlasını ATP halinde, kendini taşıyan ve koruyan ilkin kökenli hücreye vermek­tedir. Mitokondrilerin bakteriler gibi kendine özgü çember DNA (katena form) taşıması bu varsayımı kuvvetlendirmektedir.

LiZOZOMLAR

Prof. Dr. Ali Demirsoy

Mitokondriterin büyüklüğünde (0.5 mikron çapında); sayıca onlardan az ve daha düşük yoğunlukta; lipoprotein yapısında tek tabakalı bir zarla çevrilmiş, içle-rinde litik enzimler (hidrolazlar, proteazlar, lipaztar ve fosfatazlar; toplam kırktan fazla enzim saptanmıştır) içeren, çoğunluk küremsi keseciklerdir (Şekil 3.1 ve 5). ilk defa 1955 yılında sıçan karaciğerinde saptanmış, daha sonra alyuvarlar hariç, tüm hayvansal hücrelerde, özellikle vücudun savunmasından sorumlu olan akyuvarlarda ve makrofajlarda, bol miktarda bulunduğu görülmüştür. Bitki hücrelerinde, mantar­larda ve mayalarda lizozom benzeri yapıların olduğuna ilişkin bazı kanıtlar vardır. Bakterilerde ise lizozom yoktur; fakat litik enzimler bulunmuştur.

Hücrelerdeki bileşikleri, özellikle protein, polisakkarit ve çekirdek asitlerin!, hidroliz ederek parçalayabilen bu litik enzimler, bir zarla çevresinden ayrılmakta ve büyük bir olasılıkla da, lizozom İçerisinde etkisiz (inaktif) durmaktadır. Tahrip edilen bir fizozomdan dışanya akan enzimler, kısa bir sürede tüm hücre içeriğim’ liziz ederek (parçalayarak), onu ölüme sürükler. Bu olaya “Otoliz” denir, ölümden kısa bir süre sonra kokuşmanın ortaya çıkması, bu lizozomların bozulması nedeniyledir. Lizozom enzimleri ribozomlarda sentezlenerek ya ER aracılığıyla doğrudan doğruya ya da GA aracılığıyla dolaylı olarak paketlenerek, yani bir kesecik içerisine alınarak sitoplaz-maya verilir, içi tanecikli, lamelli ya da homojen yapıda olabilir.

Yumurtanın döllenmesi sırasında, spermanın akrozomundan çıkarılan (yumur­tayı delmek için) enzimler lizozom içeriğidir. Lizozomların iyi işlev görmemesi hücre-•lerin ve dokuların yaşlanmasına neden olur. Metamorfoz (başkalaşım) geçiren canlı­ların hücrelerinin bir çeşit eriyerek yeniden şekillendirilmesinde, erime işlemim gerçekleştiren lizozomlardır. Keza dokulardaki programlanmış (zamanı gelmiş) hücre ölümleri de yine bunlar tarafından yapılır.

Hücre içerisine giren küçük moleküller doğrudan doğruya enerji elde eden sis­temler (glikoliz ve trikarboksilik asit çemberi) aracılığıyla parçalanabilir ya da sentez-lenme tepkimelerine herhangi bir değişikliğe uğramadan katılabilir. Halbuki endo-sitozisle, fagositozla ve besin kofullanyia (birhücrelilerde) hücreye alınan büyük moleküller, maddeler, hatta bakteriler, lizozomlar aracılığıyla küçük moleküllere par­çalanır. Bir miktar hücre zarıyla çevrilmiş olarak, hücre içine giren bu besin kofulu (fagozom), lizozomlaria sanlarak, temas ettikleri yerde, zarları erimek suretiyle bir tek koful halinde birleşirler. Litik enzimler bu koful içinde besin maddelerim, koful zarından diffüzyonla geçebilecek kadar küçük moleküllere parçalarlar ve sindirileme-yen kısım koful içinde kalır. Birhücreli canlılarda, artık maddeleri taşıyan bu koful, hücre zarıyla birleşerek dışanya açılır ve sindirelemeyen maddeler bu yolla atılır. Yüksek organizasyonlu canlılarda bu artıklar ya yavaş yavaş (çoğunluk diffüzyonla) hücre dışına atılır (karaciğer hücrelerinde olduğu gibi) ya da sindirim kofulu tekrar tekrar kuiiamlarak, bir zaman sonra artık maddelerle dolmasına ve hücrenin yaşlan­masına neden olur. Yaşlandıkça insanın vücudunda, özellikle ellerinin üzerinde, omuzlarında ya da yüzünde, kahverengi lekelerin oluşması, lipofuksin denen pigmentlerin (yaşlılık pigmenti) birikmesindendir,

Kandaki akyuvarlar, vücudu, özellikle bakterilere karşı savunmak için sorumlu olduklarından, taşıdıkları taneciklerde bol miktarda lizozom enzimi içerirler. Böylece, bir zaman sonra akyuvar içerisindeki taneciklerin hepsi bakteri lizisinde kullanılır ve tüm hücre bir ya da birkaç kofulla tamamen dolar. Bu artık maddeler dışanya atılamadığından bir zaman sonra akyuvar ölür.

Kemiklerin yıkılıp yeniden yapılması sırasında, lizozomlar, yıkıcı osteoklast hücre-lerinden dışanya litik enzimler salgılarlar ve yıkılan artıkları da hücre içerisinde sindi­rirler. Keza yumurtanın döllenmesi sırasında da spermanın akrozumundan (basının uçundan) litik enzimler (pankreas tripsinine benzer bir enzim) salgılanarak, yumurta zarının delinmesi sağlanır. Döllenmeden hemen sonra, bu sefer, yumurtanın kabu-ğunda bulunan taneciklerdeki litik enzimler serbest hale geçerek kabuğu parçalar ve diğer spermaların girmesin! önleyecek yeni bir kabuğun meydana gelmesini sağlar.

Lizozomlar keza kendi hücresi içerisindeki bazı maddeleri ya da organelleri (çoğunluk işlevlerim bitirmiş ya da bozulmuş) de sindirir. Bunun nasıl işlediği tam olarak bilinmemektedir. Sindirim kofullarının içinde ribozom ve mitokondrilere rast­lanır. Fazla A vitamininin kemiklerdeki ve kıkırdaktaki lizozom enzimlerim serbest bıraktığı ve dolayısıyla kemikleri kırılır bir duruma geçirdiği; fakat yeterli miktarlarda da yaşlı hücreleri yok etmeyi sağladığı için genç kalmada yardımcı olduğu saptan­mıştır.

Lizozom enzimleri daha çok hafif asidik ortamlarda etkendir. Hücrede birçok işlevinin yanısıra, bozukluklannda bazı hastalıkların ortaya çıkmasına neden olurlar. örneğin, soluduğumuz havadan alınan karbon parçacıkları, akciğerimizdeki fagosit­lerde yıllarca kalmasına karşın, silisyum dioksit, fagositlerin lizozomuna girer ve ora­da bulunan enzimlerin etkisiyle, kristallerinin üzerinde silisik asit oluşur. Silisik asidin hidroksil grupları, hücre zarının yapısında bulunan fosfolipit ve proteinlerin bazı gruplarıyla çok sıkı hidrojen bağları kurar. Böylece hücre ve lizozom zarları zedelenir. Ayrıca silisyum dioksit taşıyan fagositler hücre dışına bir madde salgılarlar. Bu mad­de, özellikle akciğerdeki bağ dokunun bir çeşit fibröz dokuya dönüşerek esnekliğin} yitirmesine neden olur. Keza aspest kristalleri de aynı rahatsızlıklar), özellikle mezo-telyum (vücut boşluğunu astarlayan zar) kanserlerini meydana getirir. Kanda ürik asidin fazla olması (proteini fazla alanlarda daha yaygındır), mono-sodyum ürat kris­tallerinin eklem yerlerinde toplanmasına (gut hastalığı) ve buradan da fagositlerin içi-ne girerek, lizozomlarındaki enzimleri serbest bırakmasına neden olduğu bilinmekte­dir. Bu da sonuçta kininlerin (ağrı yapıcı maddeler) meydana gelmesini sağlar. Bun­dan başka lizozom enzimlerinin, histamin, serotonin ve bradikinin oluşumunu sağla­dığı, bunların da yangıya (apse) neden olduğu varsayılmaktadır. Sıtmaya karşı kulla­nılan kinin, bağırsak parazitlerine karşı kullanılan karbon tetraklorit, parazitlerin lizo-zomlanna yoğunlaşarak onların etkinliğini bozar. Keza deriyi ışığa karşı duyarlı kılan porfirin, antrasen ve nötral kırmızısı yine lizozomlarda toplanır.

Mitozda lizozomların sayışı azalır ve olanlar da kenara itilir (normal durumda çekirdek civarında fazladırlar). Keza lizozom zannın geçirgenliğim artıran maddeler (örneğin karsinojen etki gösteren forbol A) verildiğinde, mitoz bölünme hızı artırılır, stabilize edici maddeler (kortizon gibi) verildiğinde bu hız azaltılır. Bu da mitoz bölün­menin belirli ölçüde lizozomlarla hızlandırıldığını kanıtlar. En azından meydana getir­diği proteaz enzimler aracılığıyla, ribozomlardaki protein sentezini inhibe eden bazı proteinleri parçalamak suretiyle, hücre aktivitesini artırdığı saptanmıştır. Nitekim yumurtanın döllenmesi sırasında verilen litik enzimler (keza yumurta hücresine pro-teolitik enzimler verildiğinde de aynı şey olur) bu inhibitörü ortadan kaldırdığından, protein sentezi büyük ölçüde artar.

Lizozomlardan elde edilen lizozom deoksiribonükleazın (DNaz) DNA’yı parça­ladığı bilinmektedir. Lizozom DNaz’ın iki aktif bölgesi vardır. Bunlar DNA sarmalının her iki ipliğin! birden parçalarlar. Yalnız bir ipliğin parçalanması, karşı taraftaki komp-lementeri tarafından onarılabilir (daha geniş bilgi için kalıtımla ilgili bölümdeki DNA rejenarasyonuna bkz!). iki taraflı yıkımın onarımı olanaksızdır. Lizozom DNaz’ı, DNA’yı tam yıkmasına karşın, pankreas DNaz’ı kısmen yıkabilmektedir.

Kanser meydana getiren birçok faktörün (fiziksel mor ötesi ışınlar ve îyonize ışınlar; kimyasal polibenzoitler, hidrokarbonlar, azotlu bazı bileşikler, dişi eşey hormonu, silis, aspest vs. ve virüsler) doğrudan ya da dolaylı olarak kromozom yapışım ya da DNA’nın dizilimim bozduğu bilinmektedir, özellikle silisyum dioksitte anlattığı­mız gibi bazı maddelerin lizozom zarım bozarak, enzimlerin, bu arada DNaz’ın serbest kalmasına; bunun da DNA’yı bozarak hücrenin ka^serleşmesine yol açtığı varsayılmaktadır.

Keza kalıtsal olarak, birçok enzim sentezlenemeyebilir ve buna bağlı olarak lizozomlar işlevlerim yapamazlar. Bu şekilde, çoğunluk autozomlardaki çekinik genlerin neden olduğu (bir tanesi eşey kromozomundadır) on kadar hastalık tanımlanmıştır (örneğin Tay-Sachs, Niemann-pick, vs.), özel yöntemlerle (enzimlerin üzerim antikorla kaplamak suretiyle), dışarıdan, lizozom içine sokulan eksik enzimler, hastaların iyileşmisine neden olur.

ENDOPLAZMiK RETiKULUM

Prof. Dr. Ali Demirsoy

Hücre sitoplazması, sentez işlevlerinin yürütülmesinde çok büyük bir önemi olan ve endoplazmik retikulum (ER) denen kanalcıklar ve borucuklarla donatılmıştır (endo = Yunanca iç; retikulum = Latince küçük ağ demektir). Bu sisteme

“E r g a s t o p l a z m a” da denir. Kanalcıklar (sisternalar) ve borucuklar çekirdek zarının hücre zarına kadar çeşitli şekillerde uzamasıyla meydana gelmiştir. Bu ince borucukların çeperi 5-6 nm. kalınlığındaki zar biriminden yapılmıştır; lümenlerinin çapı en azından 50 nm.’dir. Kanallar (sisternalar) hücre içi madde dağıtımını ve taşınımını, hücrede asidik ve bazik tepkimelerin birbirini etkilemeden bir çeşit odacıklar içinde oluşmasını ve hücrenin mekanik etkilere karşı daha dayanıklı olmasını sağlar. Dolayısıyla borucukların lümeni, çekirdek porlarına doğrudan açılır. Bununla beraber ER’un iç ve dış zarı, çekirdeğin iç ve dış zarına bağlanmış, dolayısıyla ER ve çekirdek zar arası boşlukları ağızlaşmıştır. Bu nedenle çekirdekle yakından ilişkisi vardır. Her hücrenin endoplazmik retikuler sistemi kendine özgüdür. Kanalcıklar sistemi sabit değildir, gelişim ve işlev durumuna göre yapışı hızla değişebilir. Hücre bulunurken kaybolur, daha sonra yeniden oluşur. Hücre yaşlandıkça ER’un işlevleri ve kanalcıkların birbiriyle ilişkisi azalır, iki tip endoplazmik retikulum ayırt edilir.

Granüllü (Tanecikli) endoplazmik retikulum

Özellikle protein sentezi yapan hücrelerde iyi görülür. Çünkü protein sentezi, çoğunluk ER’un borucuk ve kanalcıklannın dış yüzüne bağlanmış ribozomlarda gerçekleştirilir. Bu nedenle protein sentezlenen kısımları tanecikli görülür. Fakat ribozomların ER’a bağlanma zorunluluğu yoktur. Bakterilerde ER bulunmamasına karşın, ribozomca zengindirler. ER diğer maddeleri de sentezlemektedir (örneğin, yağ).

Granülsüz (Düz) endoplazmik retikulum

Daha çok yağ sentezi yapan hücrelerde, özellikle steroyit hormonları sentezleyen endokrin bezlerde bulunur. Kural olarak ribozom içermezler. Fakat düz ER sistem ile granüllü ER sistem arasında belirgin yapısal bir fark yoktur. Bu sentezleri yapan enzimleri, ER sistemin zarlarından ayırmak mümkün olmamıştır.

HÜCRE DÖNGÜSÜ I

Prof. Dr. Ali Demirsoy

Birhücreli canlılarda mitoz aynı zamanda üremeyi sağlar. Her canlıda ve aynı bireyin farklı dokularındaki hücrelerin mitozla bölünme hızı tamamen farklıdır. Örneğin bağırsak mukozasındaki, epidermisdeki, kan hücrelerini üreten dokulardaki hücrelerin sürekli bölünmesine karşılık, diğer dokuların hücreleri belirli zamanlarda, sinir ve retina hücreleri ise 20-25 yaşın üstünde (insanda çoğunluk ana karnında4. aydan sonra) hiç bölünmez.

Son zamanlardaki çalışmalarda cAMP’nin ve cGMP’nin, kültürü yapılan bazı hücrelerin bölünmesinde antagonistik olarak etki ettiği gözlenmiştir. Öyleki cGMP, hücre büyümesini ve belki de bölünmesini uvarır: cAMP ise durdurur. Mitoz bölünmenin amacı ana hücredeki kalıtım materyalinin eşit şekilde yavru hücrelere verilmesidir. Birhücrelilerdeki amitoz bölünmede, hem iğ iplikleri işe karışmaz hem de kalıtım materyali yavrulara büyük bir olasılıkla eşit verilmez. Mitoz bölünme sürekli bir olay olmasına karşın, izlemede kolaylık olsun diye onu evrelere bölerek inceleyeceğiz. Dinlenme sırasında, kromozomlar boyanmaz. DNA miktarı 2n’dir (G^ - E v r e s i). Daha sonra DNA kendini eşler. DNA miktarı 4n’dir. ince kromatit iplikleri şeklinde boyanırlar (S - E v r e s i). Üçüncü evre koyu boyanan kromozomlara sahip, 4n’li evre (Gn - E v r e s il’dir. Son evre ise mitoz bölünmenin gerçekleştiği ve kromozom sayısının 2n’e indiği evre (M - E v r e s il’dir. Hücredeki tüm yapıların ikileşerek, daha sonra iki yavru hücreye verilmesini sağlayan bu döngüye “Hücre S i k l u s u” (= Hücre Döngüsü) denir . Bir hücre döngüsünde büyüme ve bölünme diye birbirini izleyen iki farklı evre vardır.

Bitki ve hayvanlarda hücre döngüsünün tamamlanması yaklaşık 20 saat kadar sürer. Bu sürenin yaklaşık bir saati mitoz bölünmeye ayrılmıştır. Geri kalan süre interfazdaki büyüme için kullanılır. En uygun beslenme ve sıcaklık koşullarında dahi, herhangi bir hücre çeşidinin bölünme süresi sabittir. Uygun olmayan koşullarda bu süre uzayabilir. Fakat hem hücrenin optimumdan daha hızlı büyümesini hem de optimumdan daha hızlı döngüsünü sağlamak olanaksızdır. Bundan şu sonuca varabiliriz:

Her hücrenin döngü süresi kusursuz bir zamanlamayla gelişecek şekilde programlanmıştır. Bu program iki aşamada yürütülür, llkinde kromozomlardaki kalıtsal materyal iki katma çıkarılır, ikincisinde ise hücrenin diğer organelleri çoğaltılır.

Döllenmiş yumurtalarda bölünme, alışılmışın tersine bir saatte ya da daha az bir süre içinde tamamlanır. Çünkü yumurta hücresine, yumurtanın olgunlaşması sırasında her çeşit molekülden bol miktarda verilmiştir. Böylece yumurta hücresi hızla bölünerek gittikçe daha küçük hücreleri yapar. Bunlardaki hücre döngüsünde büyüme evresi yoktur, yalnız bölünme için hazırlık yapılır. Bu nedenle yaklaşık bir saatte bir bölünebilir.

Kategori: Biyoloji



Destekliyoruz arkada - arkadas - partner - partner - arkada - proxy - yemek tarifi - powermta - powermta administrator - Proxy