Bilim Tarihinde Matematik

12 Temmuz 2007



Bilim Tarihinde Matematik

Matematikle ilgili eserler incelendiğinde; birinci grup olarak, Eski Yunan matematikçilerinden Tales (Thales M.Ö. 624-547), Fisagor (Pythagoras M.Ö. 569-500), Zeno (M.Ö. 495-435), Eudexus(M.Ö. 408-355), Öklid (Euclides M.Ö. 330?-275?), Arşimed (Archimedes M.Ö. 287-212), Apollonius (M.Ö. 260?-200?), Hipparchos (M.Ö. 160-125), Menaleas (doğumu, M.Ö. 80) İskenderiyeli Heron (? -M.S.80) , Batlamyos (Ptelemeos Claudis 85-165) ve Diophantos (325-400) ile bunların çağdaşlarının adları görülür. Daha sonra, ikinci grup olarak da Batı Dünyası matematikçilerinden; Johann Müler (Regiomantanus ,adıyla da tanınır, 1436-1476), Cardano (1501-1596), Decartes (1596. 1650), Fermat (1601-1665), Pascal (1623-1662), Newton (Isaac Newton 1642-1727), Leibniz (1646-1716), Mac Loren (1698-1748), Bernoulli’ler (Bu aileden sekiz ünlü matematikçi vardır. Bunlar; Jean Bernoulli l667-1748, Jacques Bernoulli 1654-1705, Daniel Bernoulli 1700-1782…), Euler (1707-1783), Gespard Monge (1746-1818), Lagrance (1776-1813), Joseph Fourier (1768-1830), Poncolet (1788-1867), Gauss (1777-1855), Cauchy (1789-1857), Lobatchewsky (1793-1856), Abel (1802-1829), BooIe (1815-1864), Riemann (1826-1866), Dedekind (1831-1916), H. Poincare (1854-1912) ve Cantor (1845-1918) ile bunların çağdaşlarının adları belirtilir Bu bilginlerin adlarını ve matematikle ilgili sistem, teorem ve kavramlarını her kademedeki orta dereceli okul ile üniversite ve dengi okul matematik kitaplarında görmek mümkündür.

Yukarıda; birinci grup olarak belirttiğimiz; Eski Yunan (Antik çağ, Grek) matematikçileri; M.Ö. 8. yüzyıl ile M.S. 2. yüzyıl arasında, ikinci grup olarak belirttiğimiz Batı Dünyası matematikçileri ise, 16. ile 20. yüzyıl arasında yaşamışlardır: Burada akla şöyle bir soru gelmektedir. 16. yüzyıldan önceki zaman içerisinde matematik konularında hiç bir araştırma ve çalışma olmamış mıdır? Özellikle, islamiyetin ilk yılları olan 7. yüzyıl ile 16. yüzyıl arasında yaşamış olan Türk-İslam Dünyası matematik bilginlerinin varlığı ve çalışmaları görmezlikten gelinmiştir.

Gerçek olan şu ki; Türk-İslam Dünyası matematikçileri, yukarıda birinci grup olarak adlarını belirttiğimiz Eski Yunan bilginlerinin ortaya koyup, yeterli çözüm getiremedikleri, matematik sorunlarına yeni çözümler getirdikleri gibi, bu bilime yeni sistem, kavram ve teorem kazandırmışlardır. Bu başarılarının sonucu bugünkü ileri matematiğin temelini atmışlardır. Her ne kadar, Batı’lı bazı bilim tarihçileri, Eski Yunan matematiğini geliştirmiş olmakla vasıflandırıyorlarsa da, son yüzyıl içinde yapılan araştırmalar, bu hükmün temelinden yanlış olduğunu ortaya koymuşlardır.

Ülkemizde, evrensel nitelikteki kendi alimlerimizin bilimsel yönlerine gereken ve yeterli önem verilmezken; Batı’da, özellikle son yüzyıl içerisinde, bilginlerimize ait yüzlerce cilt eser ve makalelerin yayınlandığı, hatta bu bilginlerimiz için, yaşadığı yüzyıllara adlar verildiği ve anma törenleri düzenlendiğini görmek mümkündür. Bunlardan birkaç örnek vermek gerekirse; dünyada ilk cebir kitabı yazanın Harezmi (Harezm 780-Bağdat 850), trigonometrinin temel bilginlerinden olan sinüs ve cosinüs tanımlarını ilk açıklayan el-Battani (Harran 858-Samarra 929) , tanjant ve cotanjant tanımları ile ilgili temel bilgileri Ebu’l Vefa (Buzcan 940-Bağdat 998), Pascal’a (Blaise pascal 1623-1662) izafe edilen ve cebirde önemli kuralları ihtiva eden “Binom Formülünün” Ömer Hayyam’a (1038-Nişabur 1132) ait ve Kepler’in (Johannes Kepler 1570-1630) araştırmalarına rehberlik edenin İbn-i Heysem (Basra 965-Kahire 1039). olduğunu belirtebiliriz. Ayrıca Sabit bin Kurra (Harran-826-Bağdat 901) için “Türk Öklid’i” bilim dünyasının en büyük alimi, Beyruni (Bruni) (Ket 973-Gazne 1052) için “Onuncu Yüzyıl Bilgini”, ünlü Türk hükümdarı Uluğ Bey için “On Beşinci Yüzyıl Bilgini” öğrencisi Ali Kuşçu için “On Beşinci Yüzyıl Batlamyos’u” dendiğini de belirtmek mümkündür.

Yukarıda sadece birkaçının adını belirttiğimiz 8. ile 16. yüzyıl Türk-İslam Dünyası alimlerinin eserleri, Batı’da “Tercüme Yüzyılı” olarak adlandırılan 12. yüzyıl başlarından itibaren, önceleri zamanın bilim dili olan Latince’ye, daha sonradan da, öteki Batı dillerine çevrilmiştir. Çevrilen bu eserlerin asılları ise, Doğu Yazma Eserleri ile zengin olan Avrupa kütüphanelerinde muhafaza edilmekte ve hala, ilgili bilim adamlarının elinde, gerektiğinde temel müracaat kitabı, ya da kaynak eser olarak değerlendirilmektedir

Bazı kaynaklar, matematiğin kurucusu ve geliştiricisi olarak, Batı dünyası matematikçilerinin adlarını belirtir. Gerçekte; Avrupa, 8. ile 16. yüzyıl Türk-İslam Dünyası matematikçilerinin hazırlamış oldukları temel eserlerden büyük istifadeler sağlayarak, matematiği, bugünkü ileri seviyesine ulaştırabilmişlerdir. Öyle ki; Türk-İslam Dünyası matematikçileri, Batı dünyasının ilmi düşünce ve araştırma duygularını ateşleyerek harekete geçirip beslediler ve yeni bir canlılık kazandırdılar. Cebir, geometri, aritmetik ve trigonometri konularında Batı’yı kendi görüş ve keşiflerine dayanarak ilerleyebileceği seviyeye getirdiler.

16. yüzyıl sonları için İtalyan matematikçi Cordano’nun (1501-1576) adını belirtebiliriz.

17. yüzyılda; İngiliz (İskoçyalı) Jean Napier (1550-1617), İsviçre matematikçilerinden Gulden (1577-1643); İtalyan matematikçilerinden Cavalieri (1598-1647); Fransız matematikçilerinden Rene Descartes (1596-1650), Desargues (1593-1662), Blaise Pascal (1623-1662), Pierre Fermat (1601-1663); Hollandalı matematikçi Huygens’in (1629-1695) adlarını belirtebiliriz.

Bu kişilerden J. Napier logaritmaya ait sistemleri ortaya koymuştur. R.Descartes de analitik geometriye ait yeni bazı temel esasları ortaya koymuş, mevcut analitik geometri bilgilerini sistemleştirmiştir. Diğer matematikçiler de, matematiğin çeşitli dallarına ait, bazı yeni temel

bilgiler kazandırmışlardır.

18. yüzyılda; İsviçre matematikçilerinden; Bernouilli (Jacques I 1654-1705), Cramer (1704-1752), Leonard Euler (1707-1783), Alman matematikçilerinden Gott-fried-Wilhelm Leibniz (1146-1716), İngiliz matematikçilerinden lsaac Newton (1642-1727), Mac-Loren (1698-1746), İtalyan Matematikçilerinden Ceva (1648-1734), Riccati (1676-1754), Fransız matematikçilerinden Clairaut’in (1713-1765) adlarını belirtebiliriz.

19. yüzyıl Fransız matematikçilerinden; Jooeph-Louis Lagrance (1736-1813), Gasport Monge (1746-1818), Pierre-Simon Laplace (1749-1827), Joseph Fourier (1768-1830), Galois (1811-1832), Legendre (1752-1833), F. W. Bessel (1784-1846), Augustin-Louis Cauchy (1789-1857), Jean-Victor Poncolet (1788-1857), Poinsot (1771-1859), Brianchan (1785-1864), Dupin (1784-1873), Chasley (1793-1880), Charles Hermite (1822-1901); İtalyan matematikçilerden Carnot (1753-1823); Norveç matematikçilerinden Niels Henrik Abel (1802-1829), Alman matematikçilerden, Jacobi (1804-1851), Carl Friedrich Gauss (1777-1855), Gerge Friedrich Berhard Riemann (1826-1866), Leopold Kronecker (1823-1891), Erust Kummer (1810-1893), Weierstrass (1815-1897); Sovyet matematikçilerinden Nicolas lvanawitch Lobatchewsky (1793-1856), Sonia Kowallewska (1850-1891); ingiliz matematikçilerden Gerge Boole (1815-1864), Cayley (1821-1895), James Joseph Sylvester (1814-1897) ve İrlandalı matematikçi William Rawan Hamilton (1805-1865) adlarını belirtebiliriz.

Bu kişilerden; Gasport Monge, tasarı geometrinin; Carnot, konum geometrisinin; Newton, sonsuz küçükler geometrisini; pascal, Huygens ve Fermat da, olasılık hesabını ve gökmekaniğini geliştirdiler.

20. yüzyıl başları için; Alman matematikçilerinden Dedekind (1831-1916), L.Fhillip Cantor (1845-1918), Fransız matematikçilerinden Henri Poincare’nin (1854-1912), ülkemizde de, Henri poincare’nin öğrencisi Salih Zeki’nin (1864-1921) adlarını belirtebiliriz.

Daha sonra gelen; Alman, İngiliz, Fransız, Amerika Birleşik Devletleri ve Sovyet Sosyalist Cumhuriyelteri Birliği, Japonya ve Hindistan ile Çin’de yetişen matematikçiler, matematiğe kazandırdıkları yeni bilgiler ile, matematiği insan zekasının en yüksek eseri haline getirmeyi başardılar.

Yapılacak kısa açıklamalardan sonra, şu gerçek ortaya çıkacaktır. Bugünkü ileri matematik ve bunun uygulama alanı olan astronomi (gökbilim) ve fiziğin temel bilgileri, uygulamaları ile birlikte, başlangıçta, Eski Mısır ve Mezopotamya’da vardı. Daha sonraları bu bilgiler, Eski Yunan, Eski Hint ve 8. ile 16. yüzyıl Türk-İslam Dünyasında ileri seviyeye gelmiştir. Bilahare 17. yüzyıl sonrası, Batı Dünyasında yapılan çalışmalar sonucunda, bugünkü <> ulaşabilmiştir. Bu gelişimde, 17. yüzyıl öncesi medeniyetlerin şeref payları inkar edilemeyecek kadar açıktır.

Matematiğin Önemi

Matematik, genel mantığın uygulama alanı ve insan zekasının bu yolda işlemesi görevini görür. Ayrıca; mekanik, fizik, astronomi bilimlerinin de temelini teşkil eder. Bunların dışında, sosyal bilimler, tıp, jeoloji, jeofizik, psikoloji, sosyoloji ve iş idareciliği gibi alanlarda da, matematiğe geniş bir şekilde ihtiyaç duyulur ve yaygın bir şekilde kullanılır.

Bugünün medeniyetinde ön safı tutan, büyük endüstri ve yan kuruluşları, istihkam hizmetleri hep matematiğin yardımı ile yapılmış eserlerdir. Şu an siz bu yazıyı okurken, karşınızda duran bilgisayarınızın içinde milyonlarca matematik işlemi büyük bir sürat ile yapılmakta ve sonuçları size görüntü ve ses olarak sunulmakta. Yolda yürürken gördüğünüz binalar, taşıtlar ve yollar hep matematik ve mühendisliğin ortaya koymuş olduğu tasarımlardır. Onun için en soyut bir ilim olan matematik, ikinci elden pratik hayata da tesir ediyor demektir.

Denilebilir ki; günlük yaşantımızın her evresinde, karşı karşıya olduğumuz bir bilimin tarihini bilmek, matematiğin önemini kavramanın temeli olsa gerekir.

Matematiğin Bilimler İçindeki Yeri

Özellikle; fizik, kimya ve astronomi (gökbilim) gibi, müspet bilimler bilimleri, yani fen bilimleri söz konusu olduğunda, bu bilimlerin hem temelinde ve hem de bugünkü ileri duruma gelmelerini hazırlayan faktörlerin başında matematik vardır.

Matematiğin bilimler içindeki yerini şematik olarak belirtecek olursak :

Bu temel bilimler de, kendi içerisinde ayrı bilim dallarına ayrılır. Bugün matematik için 544 ayrı bilim dalı vardır. Astronomi için de, 40 ayrı bilim dalı belirtmek mümkündür.

Ayrıca, bu temel bilim dalları için, ara disiplinler de söz konusudur. Örneğin: Fizik-kimya, biyo-kimya, biyo-fizik, astro-fizik, jeo-fizik gibi.

Matematiğin Sınıflandırılması

Gerçekte, matematiğin tam bir sınıflandırılmasını yapmak mümkün değildir. Çünkü, ayrı matematik dalları olarak belirteceğimiz dalları da, birbirleri ile iç içe durumdadır. Ancak, konu ile ilgili eserlerde, aşağıda görüldüğü şekilde bir sınıflamanın, genelde yaygın olduğu görülür.

Matematiğin Nitelikleri

Matematik, bir zihin (zeka) çalışmanın sonucu ortaya çıkmıştır. özellikle, atom modeli ve yapısı üzerinde yapılan araştırmalar ilerledikçe, çekirdek fiziği, bugünkü ilerleme safhasına eriştikten sonra, fen bilimlerinde matematik, en güvenilir bir açıklama aracı haline gelmiştir. Bu önemi her geçen gün artmaktadır.

Matematiğin, bu önemini almasındaki niteliklerini, şu şekilde sıralamak mümkündür:

A) Doğruluğu Kesindir.

B) Geneldir.

C) Soyuttur.

Matematiğin Temel İlkeleri

Her kelimeyi tanımlamak mümkün olmadığı gibi, her hükmü de ispat etmek mümkün değildir. Bir kelime, başka kelimelerle tanımlanır, bu sonuncular da, daha başka kelimelerle tanımlanır. Böylece kullanılan her kelimeyi tanımlamak için, sonsuz şekilde geriye gitmek gerekmektedir ki, bunun imkansız olduğu ortaya çıkar. Bunun gibi; matematikte, bir teorem, başka teoremlerle, o teoremler de başkalarıyla İspat edilir. Her şeyi ispat için, imkansız olan, bir sonsuz geriye gitme lazım geldiğinden, ister istemez bir yerde durmak icap ediyor. Şu halde, nasıl ki, tanımlanamayan şeyler varsa, öylece ispat edilmeyen şeyler de vardır. İspat edilemeyen bu şeylere, matematikte prensipler adı verilir. Gerçi, prensipler ispat edilemezler, fakat her şey bunlara dayanarak ispat edilir. Bunların ispatsız kabul edilmelerinin sebebi budur.

Matematiğe ait, sistematik eserler meydana getiren Eski Yunan (Grek) matematikçileri, bazı hükümleri ispatsız kabul etmek lazım geldiğinin farkına varmışlardır. Bunlardan Öklid, Elementler adlı eserinin başında, bu gibi hükümleri ifade etmiştir. Bunlara da, <> adını vermiştir. Zamanla, bu kabulü istenen şeylerin sayısı değişmiştir. Örneğin, 19. yüzyıla kadar, matematikçiler, Öklid’in ispatsız kabul ettiği ve Öklid Postülatı denilen <> şeklindeki hükmünü ispat etmeye çalışmışlardır. Fakat, daima ispatsız birtakım hükümler, yeni yeni prensipler kabul edilmiştir.

Eskiden beri, matematikçiler tarafından, matematiğin temel prensipleri üç grupta toplanmıştır. Bunlar:

A) Tanımlar

B) Aksiyonlar

C) Postülatlar

Bu üç temel prensibe ait ilginç örnekler ve geniş bilgileri, herhangi tir matematik kitabında görmek mümkündür.

Matematiğin Diğer Bilimlerle İlgisi ve Diğer Bilimlerden Farklı Yönleri

Matematik diğer müspet bilimlerin gelişmesini sağlar. Matematiğin diğer bilimlerle olan başka bir ilginç özelliği ise şudur; öteki bilimler de matematiğin bugünkü ileri seviyeye gelmesinde katkıda bulunmuştur. Örneğin: 17. yüzyıl başlarında, gök cisimlerinin yörünge hesapları sırasında, mevcut matematik bilgileri, astronomlar için yeterli olmamıştır. Netice itibariyle de, astronomların zorlamaları sonucu, matematikçiler tarafından, diferansiyel denklem kavramları ortaya konmuştur.

Fen bilimlerinden olan; fizik, kimya ve astronominin varlığı düşünüldüğünde, bu bilimlerde temel özellik, gözlem ve deneye dayalı, aynı zamanda da ölçülebilir, olmasıdır. Halbuki matematik, soyut bir bilim olmakta ve temel konusu da sayılar ve çevremizde gördüğümüz şekillerdir.

Matematiğin öteki bilimlerden diğer farkları ise, şu şekilde sıralamak mümkündür:

Sembol ve şekiller kullanılır, uygulama alanı geniş, soyut ve kesin sonuç esasına dayanır, kesin kanunları vardır, kendisini devamlı yeniler, öteki bilimlerde yapılan çalışmaları kanuniyet halinde ifade edilebilir duruma getirir, var olanı inceler, kesin sonuç verir, birbirine bağımlı olarak sürekli gelişme gösterir ve gelişmeleri birbirini tamamlar.

Matematik Tarihinde Bilgi Kaynakları

Yeterli bir matematik bilgisi ile, iyi bir araştırma zihniyetine sahip olmak gerekir. Böyle olunca da, araştırma için gerekli bilgilerin kaynağı olan, yabancı dilleri bilmek gerekir. Daha sonra da, bilimin ilk yazılı belgelerinden, yani bilgi kaynaklarından olan; papirüs, kil tablet, mağara resimleri, parşömen kağıtlar, çivi ve resim (hiyeroglif yazılarını okuyabilecek kadar bilmek gerekir.

Diğer bir husus da; bilimin etkin olduğu devrelerin bilim dili olan, Latince, Arapça ve Farsça dillerini bilmek gerektiğidir. Ayrıca, zamanın bilim dili olan ve bugün ölü dil olarak kabul edilen Sanskritce ve Pevleviceyi de bilmek gerekmektedir.

Pek doğaldır ki; bu kadar geniş bir bilgiyi, bir bilim tarihçisinin veya matematik tarihçisinin bilmesi pek zor bir iştir. Ancak; gerekli durumlarda, konu ile uzmanlaşmış kimselerle işbirliği yapmak veya eserlerinden yararlanmak gerekir.

MATEMATİK TARİHİ KONUSU

Matematiğin, sayı ve sayma ile şekil kavramının ortaya çıkışından başlayarak, bu kavramların doğuşunu ve gelişimini incelemektir. Bugün, 544 ayrı dalı olduğu bilinen matematik konularını ve gelişim safhalarını bilimsel düşünce çerçevesi içerisinde ortaya koyar.

MATEMATİK TARİHİNDE UYGULANAN YÖNTEM

Uzun yıllar yapılan bilimsel araştırmalar sonucu elde edilen belge ve bilgiler, bilimsel temel esaslara göre sınıflandırılır. Ortaya çıkan bu bilgilerin, tarihte görülen medeniyetler içindeki yerleri mukayeseli bir şekilde sergilenir

İlkçağ Mağara İnsanı ve Aritmetik

İlkçağ insanı (ilkel insan, mağara insanı), rakam ve sayıları kullanmak ihtiyacını duymuştur. Bu devir insanları, ihtiyaçlarını kaydedip saklamasını da biliyordu. Avladıkları hayvanların veya sürüsündeki koyunların sayılarını belirtmek için, yaşadıkları mağara duvarlarına çizikler çizmişler, bir ağaç dalına çentikler yapmışlardır. Bazen de, ipe düğüm atmışlar, veya çakıl taşlarını kullanmışlardır .

          Bu devrin, 13-15 yaşındaki insanı, koyun ve geyik gibi varlıkları, ok gibi eşyaları sayabilmek için, ufak yuvarlak çakıl taşlarına sahip olması, veya kesilmiş bir ağaç dalı (sopa) üzerine çentik yapması icap edecekti. Bir taş veya sopa Üzerinde işaretlenmiş bir adet çentik, tek koyunu ifade ederdi. Belli bir zaman sonra, eğer her bir taş veya çentik için bir koyun yoksa, o insan bir veya birkaç koyunun kayıp olduğunu anlardı. Bu devrin insanları; sayıları bir yere kaydedip saklanmasını da biliyorlardı.

          İlkçağ insanları, sayılar için kil tabletler üzerine çizikler kazmayı, veya kesilmiş ağaç dalına çentikler yapmaya başlamakla, ilk defa, sayıları yazılı olarak ifade etmiş oluyorlardı. İlkçağ insanının kullandığı bu işaretler, rakam ve sayıların ilk yazılı ifadeleridir.

          Bunların yanında; ilkel insanlar, sayıları belirtmek için, değişik ses ve kelimeler de kullanmışlardır. Bugün sayıları belirten standart hale gelmiş sembol (şekil) ve sözcükler vardır. Günümüzde; sayılar, hem 1, 2, 3, … gibi sembollerle ve hem de; bir, iki, üç, … gibi kelimelerle ifade edilmektedir. Bugün dört adet kalemi, “dört kalem” kelimesi ile belirtip “4″ sembolü ile gösterebiliyoruz.

Tarih bakımından biraz daha ilerlediğimizde, karşımıza Eski Mısırlılar ve Mezopotamyalılar çıkar.

Eski Mısrlılarda Aritmetik Bilinen en eski sayma sistemlerinden biri, Eski Mısırlılara ait olanıdır. Eski Mısırlıların kullandıkları resim yazısının (hiyeroglif) başlangıç tarihi, M.Ö. 3300 yılına kadar geri gider. Böylece, Mısırlılar ortalama 5300 yıl önce, milyona kadar olan sayıları kapsayan bir sistem geliştirmişlerdir. Eski Mısırlılara ait sayma sistemi, ilkçağ mağara, insanının önceleri kullandığı sayma sisteminin gelişmiş şeklidir.

          Eski Mısır aritmetiği hakkındaki bilgilerimiz, zamanımıza kadar intikal etmiş papirüs tomarlarından elde edilmektedir. Bugün bu papirüsler; bilim tarihinde, M.Ö. 1900-1800 yılları için adlandırılan, Kahun ve Berlin papirüsleri ile, M.Ö. 1700 ile 1600 yılları için adlandırılan Hiksoslar Devrinden M.Ö. 1788-1580 kalma Rhind ve Moskova matematik papirüsleridir. Mısır matematiği hakkındaki diğer kaynaklar, birkaç parşömen tomarı ile kil ve tahta tabletlere dayanmaktadır.

          Eski Mısır’da rakam ve sayılar bazı sembollerin (şekillerin) yan yana gelmesiyle ortaya çıkıyordu. Bütün rakamlar, 7 değişik şeklin bir araya gelmesiyle ifade ediliyordu. Örneğin: 1 için (yukardan aşağı düşey bir çizgi), 10 için (at nalı şekli), 100 için (Çengel işareti) şekillerini kullanmışlardır. l.000, 10.000 ve 1.000.000 için de değişik semboller kullanmışlardır, ve yazım biçimi de, sağdan sola doğru ifade ediliyordu.

Bugün Kullanılan

sembollerle ifade

Mısır

Sembolleri

İfade edilen

cisim

Düşey bir çizgi

10

At nalı (topuk kemiği)

100

Çengel

1.000

Lotus çiçeği

(Mısır nilüfer çiçeği)

10.000

İşaret parmağı

100.000

Tatlı su balığı

(yavru kurbağa)

1.000.000

Şaşkın adam

Sayıları da, bu sembollerle göstererek bir sayı sistemi geliştirmişlerdir. Eski Mısırlıların, 1 den 1.000.000 a kadar olan sayıları göstermek ve yazmak için kullandıkları semboller (şekiller) yukarıda gösterilmiştir.

          Tablonun incelenmesinden anlaşılacağı gibi, 9 sayısını ifade etmek için, 9 ayrı şekil, 90 sayısını ifade edebilmek için, 9 adet başka bir şekil; 99 için 18 aynı şekil, 999 sayısı için ise, 27 ayrı şekil (sembol) kullanmak gerekli olmaktadır.

Diğer sayıları göstermek için de, bu rakamları (sembolleri) yanyana veya gerekirse toplu olarak gruplar halinde yazarlardı. Bu sistemde, bir rakam dizisindeki rakamların, yer değiştirmesiyle, bu dizinin gösterdiği sayı değişmez. Bu durumda, verilen sembollerin, 123, 213. 312 sayılarından hangisini ifade ettiğini anlamak çok güçtür. Bu güçlüğü ortadan kaldırabilmek için; metin, konu ve karine yardımıyla sonuç çıkarma yoluna gidilirdi. Buna karşılık, bizim sistemimizde, 123. 213 ve 312 ifadeleri başka başka sayıları gösterir.

          Eski Mısırlılar; bu sembolleri, gerektiğinde tahta, ağaç ve taş üzerine de oymuşlardır. Bu rakamları bir kaç kez kullanarak, istenilen sayıları göstermişlerdir. Bu sistemde; gruplamalar onarlık yapıldığından, sistem onluk sistemdir.

          Eski Mısır sistemi, aşağıdaki belirtilen özelliklerinden dolayı, mağara insanının kullandığı sistemin geliştirilmiş şekli idi:

          a) Bir kümede bulunan şeylerin toplam sayısı, sadece bir tek sembolle belirtilmiştir. Örneğin: 10 sayısının bir topuk kemiği sembolü ile belirtilmesi gibi.

          b) Diğer sayıları göstermek için, aynı semboller tekrarlanmıştır.

          c) Bu sistemde 10 luk gruplar esas alınmıştır. On düşey çizgi, bir topuk kemiği sembolünü, on topuk kemiği sembolü de, bir çengel sembolüne eş değerdir. Bu şekilde devam eder.

          Konu hakkında bir fikir vermesi bakımından aşağıdaki tabloda on tabanlı sayıların, eski Mısır sayma düzeninde nasıl yapıldığı gösterilmiştir.

Onluk Sayma Düzeninde

Mısır Sayma Düzeninde

13

21

1982

2022

30300

          Eski Mısırlılar sıfır kavramını da bilmiyorlardı ve sıfırı gösterecek bir işaret (sembol) kullanmamışlardı. Fakat sayıları, çarpma ve çıkarma tablolarına, ehramların yapılış tarihlerinden itibaren sahip bulunuyorlardı.  

Afet İnan Eski Mısır Tarih ve Medeniyeti adlı eserinde eski Mısır rakamları hakkında aynen şunları yazar:

          “Mısır’da rakamların yazılışını çok eski zamanlardan itibaren bulmak mümkündür. IV. sülale zamanında (M.Ö. 2778-2413) Methe’in mezarında bulunan yazılarda ölçü sistemlerinin mükemmel bir şekilde tespit edildiği de anlaşılıyor.”

          Kaynaklar, XII. sülale zamanından (M.Ö. 2000-1787) kalma, bir takım aritmetik problemlerini açıklayan papirüsler ele geçtiğini, bunların bugün, Kahun, Moskova, Berlin ve Rhind papirüsleri diye adlandırıldığını belirtir.

          Afet İnan adı geçen eserinde, bu konuda şu bilgileri de verir:

          “Bu papirüs metinlerinde, birçok aritmetik ve geometrik esaslar, ilmi bir şekilde konulmuştur. Bilhassa Rhind Papirüsü, Mısır matematiğinin başlıca bir abidesi sayılır. Bu türlü vesikalarda, ölçülerin ne gibi esaslara göre yapılacağı örneklerle mevcuttur. Ehramlar, doğrudan doğruya bir geometrik problemin tatbik edilmiş şeklidir. Bunlardan başka, diğer yapılar da bu hesaplara göre yapılmıştır…

          Mısırlılar pytagoras Teoreminin yalnız 3, 4, 5 özel halini, yani kenarları 3, 4, 5 olan bir üçgenin, bir dik üçgen olduğunu biliyor ve bundan inşa ve ölçü işlerinde faydalanıyorlardı.”

          Hemen belirtmek gerekir ki, Eski Mısırlıların hayatı, Nil Irmağının yükselme ve alçalmasına bağlı olduğundan, bu durumu daima ölçmek ve kontrol etmek lazımdı. İşte bu hesaplar ve arazi ölçülerinden dolayı, Eski Mısır’da aritmetik ve geometrik ilimler büyük gelişme göstermiştir. Çünkü suyun yükselme ve alçalmasıyla, şahıslara ait arazi üzerindeki sınırlar bozuluyor ve bunları belirli ölçülere göre, yeniden tespit etmeleri gerekiyordu. Bu sebepten büyük bir itina ile gerekli ölçme ve hesaplamalar yapılmıştır.

          Aydın Sayılı, Mısırlılarda ve Mezopotamyalılarda, Matematik, Astronomi ve Tıp adlı eserinde bu konuda şunları yazar:

          “Mısır rakamlarının oldukça ilkel bir vasıf taşımalarına rağmen, bunlar tarihte bilinen ilk ve en eski rakamlar arasında bulunmakla, büyük bir değer ve önem taşırlar. Çünkü bunlar belirli sembollerle ifade edilmesi, zihniyet ve düşüncesinin ilk örneklerinden, belki sadece Sümerliler istisna edilirse, en eskisini teşkil etmektedir.”

Eski Mısırlılar’da Cebir

İnceleyebildiğiniz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda a h a   h e s a b ı adı verilen bir hesaplama türüne raslanlmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılarda ve Mezopotamyalılarda Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;

          A h a kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, a h a hesaplarında, “Yanlış ve Deneme yoluyla Yoklayarak çözüm” metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz’a atfen altı örnek belirtmektedir. Bunlar :

1) x/y = 4/3 ; xy = 12

2) xy = 40 ; x = (5/2)y

3) xy = 40 ; x/y = (1/3) + (1/15) = 2/5

4) 10xy = 120 ; y = (3/4)x

5) x2 + y2 = 100 ; y = (3/4)x

6) a2 + b2 = 400 ; a = 2x ; b = (3/2)x

       Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların a h a hesabında yaptıklarının, bugünkü cebrik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.

          Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. Ancak, Aydın Sayılı adı geçen eserinde, bu konuda : “Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin a h a hesaplarıyla ilgili papirüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyulduğu gayet sarih bir şekilde görülmektedir … Problemlerin pedagojik amaçlarla bu şekilde tertiplenmiş oldukları söylenebilir.”

Türk-İslam Dünyası’nda Cebir

Objektif olarak hazırlanmış, matematik tarihi eserleri incelendiğinde, açık olarak şu hüküm görülür; Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu, 8. ile 16. yüzyıl Türk İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.

İslamiyetin Başlangıç Yılları

İslamiyetin başlangıç yıllarında; dini günlerin tespiti, namaz vakitlerinin belirlenmesi, takvim hazırlanması gibi dini problemlerle uğraşılmış olunduğu muhakkak ise de, o devir İslam matematikçilerinin, arazi ölçüleri, veraset hesapları, yükseklik tayini ve günlük yaşantı için gerekli pratik ölçme ve hesaplamalar hakkında bazı çalışmaların varlığı söz konusu olabilir. Hamid Dilgan; Büyük Matematikçi Ömer Hayyam adlı eserinde bu konuda şunları yazar : “İslam matematiği, ancak hicretin ikinci yüzyıl ortalarında Bağdat’ta doğmuştur.”

          Ancak bu tarihten itibaren, Bağdat’ta kurulan ve bugünkü Üniversitelere benzer kurum olan Dar-ül Hikme’de başta matematik olmak üzere, öteki bilimler hızla gelişmeye başlamıştır.

Eski Mısırlılar’da Geometri

Eski Mısır’da görülen geometri bilgileri, yüzey ve hacim hesapları olarak karşımıza çıkmaktadır. Mısırlılar, kare ve dikdörtgen alanlarını, doğru bir şekilde hesaplayabiliyorlardı. Düzgün olmayan bir yüzeyin planını ise, dörtgenleştirme yoluyla elde ediyorlardı. Üçgen alanı bilgisinden hareket ederek de, yamuğun alanını elde ediyorlardı.

          Mısırlılar’ın; üç boyutlu cisimlerden; silindir, koni, piramit, dikdörtgen prizma ve kesik prizma hacimlerini de bildikleri anlaşılmaktadır. Kesik piramidin hacminin hesaplanması, zamanın geometrisi için son derece önem taşımaktadır. Aydın Sayılı; adı geçen eserinde konu ile ilgili geniş bilgi verdikten sonra şunları yazar: “Mısırlılar’ın, aritmetiklerinde olduğu gibi geometri problemlerinin çözümünde de, tamamıyla somut özel hallerin ele alınmasından ileri gidilmiyor. Karşılaşılan bütün örneklerde ortak bir vasıf Mısır geometrisinde genel formül kavramının mevcut olmayışıdır. Zihinde bir nevi genel formül fikri ve belli genellemeler vardı. Açı geometrisi mevcut değildi. Bunun yanında Doğru geometrisi gelişmiş durumdaydı.” Burada doğru geometrisi ile ölçü için; sadece doğruları kullanan ve açı kavramına başvurmayan bir geometri kastedilmektedir. Alan ve hacim hesapları, doğruların yardımıyla yapılmaktadır. En, boy, taban, dikme, köşegen, çap ve çevre, hem ölçülebilen, hem de ölçüde aracı rolünü kullanıyordu. Bugünkü ifadeyle; 45 derecenin, bazı trigonometrik özelliklerini de bildikleri anlaşılmaktadır.

          Burada akla şöyle bir soru gelmektedir; Mısırlılar, ilkel geometri bilgisi diyebileceğimiz, ama bugünkü geometrinin temel bilgilerini, hangi ihtiyaçları sonucu ortaya koymuşlardır?

          Bilindiği gibi; Nil Irmağının mevcudiyeti, Mısır’ın günlük hayatı için son derece önemlidir. Bu ırmağın taşmasıyla, su altında kalan arsaların sık sık ölçülmesi, kaybolan ya da zarara uğrayan arsanın ölçüsünün doğru olarak tespiti ve vergi miktarlarının da buna göre belirlenmesi gerekmektedir. Mısır mezar lahitlerinin, piramitlerin, tahta işlerinin estetik bakımdan üstünlük sağlaması, hem çalışmaların ihtiyacından doğmuş ve hem de, zaman için var olan ölçü tekniği ile, basit de olsa, bu ölçülerin hesaplama tekniğinin kısmen ileri derecede olmasıdır.

Türk-İslam Dünyası’nda Geometri

Matematiğin; aritmetik, cebir ve trigonometri dallarında kurucu denecek kadar eser ortaya koyan, 8. ile 16. Türk-İslam Dünyası alimleri; geometri dalında da, temel teşkil edecek, zamanı için orijinal ve kıymetini uzun yıllar koruyan eserler ortaya koymuşlardır.

          İlk defa, cebiri geometriye tatbik etme fikri, ilmi metotlarla çalışan, bu devir matematikçilerinin eseri olmuştur. Bu durum, geometrinin çok kısa zamanda gelişmesini sağlamıştır.

          Özellikle, Eski Yunan alimlerinin ortaya koydukları geometri konularını kapsayan eserler, uzun yıllar anlaşılamamıştır. Ne zaman ki; İslam alimlerinin bu eserlere yazdıkları yorumlamalar sonucu, Öklid ve çağdaşlarının eserleri ancak anlaşılabilirlik kazanmıştır. Bunlardan;

a) Harezmi ve Geometri

          Matematikte yeni sayılabilecek bir dal olan, analitik geometri ile ilgili eserler, analitik geometriyi, 16. yüzyıl Fransız matematikçi Descartes’ın, 1637 yılında yazdığı La Geometri adlı eseri ile başlatırlar. Gerçekte, Harezmi tarafından 830 yılında Arapça olarak yazılan Cebri ve’l Mukabele adlı eserde, analitik geometriye ait ilk bilgiler ortaya konmuştur. Hatta, Ömer Hayyam’ın Cebir adlı eserinde de, analitik geometriye ait bilgilerin varlığı görülür. Analitik geometrinin Descartes’la ilgisini, şu şekilde belirtmek, gerçeğin tam ifadesi olur.

          Descartes, kendisinden önceki yıllarda var olan analitik geometri bilgilerin toplayarak sistemleştirmiş ve kısmen de genişletmiştir.

          Müsteşrik Sigrid Hunke, analitik geometri konusunda aynen şunları yazar.

          “Adedi çokluklarla (kemiyetlerle) geometrik çoklukların beraber yürütülmesi gerektiğine dair kesin fikir de ilk olarak, İslam ilim sahasında rastlanır … Rönesansımızın üstatları, onun için, Yunanlılar değil, bilakis İslam Dünyası oldu.”

          Denebilir ki; cebrin geometriye tatbikatı demek olan, analitik geometriyi münferit bir geometri dalı haline getirme metotlarını ilk olarak Harezmi tarafından ortaya konmuştur.

          Trigonometrinin Avrupa’da duyulup dağılmasına etkili olanların başında gelen Sabit bin Kurra, geometri konularındaki çalışmaları ile de adını zamanımıza kadar sürdürmüş olan ünlü matematikçilerimizden biridir. Konikler kitabı ile Apolonyos’a şerh yazdı. Huneyn bin İshak tarafından Öklid’in Elementler adlı eserine yazılan şerhi, ilaveler yaparak düzeltti. Menalaus, Apolonyos, Fisagor, Archimed, Öklid ve Theodosus’un eserlerini Arapçaya şerh etmekle, geometriye, zaman için orijinal olan, yeni bilgiler kazandırmıştır.

          Sabit bin Kurra’nın geometrideki yeri hakkında, müsteşrik Georges Rivoire şunları yazar : ” …Cebirin geometriye uygulamasını, müslümanlara borçluyuz. Bu da, 900 yılında vefat etmiş Sabit bin Kurra’nın eseridir.”

c) Ebu’l Vefa ve Geometri

Trigonometri çalışmaları dışında, düzgün çokyüzlüler konusuyla

da uğraşmıştır. 7 ve 9 kenarlı düzgün çokgenlerin yaklaşık çizimlerine dair yeni bir geometrik yöntem ortaya koymuştur. Kısmen Hint modellerine dayalı olarak ortaya koyduğu geometrik çizimleri, geometri bakımından önem taşır. Ebu’l Vefa’nın çizim geometrisine ait ortaya koyduğu çalışmalarına dair bir fikir verebilmek için üç ayrı problemini örnek olarak belirtelim. Bunlar:

     1) Pergelle daire içine, açıklığını bozmadan kare çizmek.

     2) Verilen bir doğru parçasını, pergel yardımıyla eşit parçalara bölmek.

     3) Verilen bir kare içine, eşkenar bir üçgen çizmek.

          Matematik tarihi İncelendiğinde; Ünlü matematikçilerden, Tales, Öklid, Fisagor’un hazırladıkları eserler ve bu eserlerinde ortaya attıkları teoremler, Harezmi, Ömer Hayyam, Sabit bin Kurra, Beyruni, Nasirüddin Tusi’nin yazdıkları şerhler ve ortaya koydukları görüşler sonucu, geometri yeni boyutlar kazanmıştır

Eski Mısırlılar’da Trigonometri

İnceleyebildiğimiz kaynaklar; Mısır Matematiğinde seked veya sekd kelimelerinin, bir açının cotangent’ına denk anlam ifade etmesinden hareket ederek, trigonometrinin, başlangıcını eski Mısırlılar’a kadar götürmenin gerektiğini belirtir. Bu konuda Aydın Sayılı Mısırlılar’da ve Mezopotamyalılar’da Matematik, Astronomi ve Tıp adlı eserinde şunları yazar: Mısır’da seked dışında, bu konuda herhangi bir gelişmeye şahit olmuyoruz. Seked’e benzeyen ya da onunla aynı olan bir kavramla, “Mezopotamya Matematiğinde” de karşılaşılmakta olduğu ve trigonometrinin başlangıcını Mısırlılar’a götürmek isabetli düşünce sayılmaz. “Mısır Geometrisinin”, “Doğru Geometrisi” olarak vasıf taşıdığını belirterek, müşterik Gandz’a atfen de Mısır’da “Açı Geometrisinin” mevcut olmadığını belirtir.

Türk-İslam Dünyası’nda Trigonometri

İçinde bulunduğumuz yüzyılda yapılan bilimsel araştırmalar. göstermiştir ki; trigonometriye ait temel bilgiler, 8. ile 16. yüzyıl Türk-İslam Dünyası matematikçileri tarafından ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir. Bunun nedenini, şu şekilde açıklamak mümkündür.

          Bilindiği gibi, 8. ile 16. yüzyılda Türk-İslam Dünyası’nın hemen her yöresinde astronomi (gökbilim) çalışmaları ve bunun sonucu olarak da, yoğun bir rasathane (gözlemevi) kurma çalışmaları vardı. Bu rasathanelerdeki bilimsel çalışmalarda, astronomiye yardımcı olarak, trigonometri kullanılmaktaydı.

          Astronominin temelini teşkil eden küresel astronomi, doğrudan doğruya, küresel trigonometrinin astronomiye uygulanmasından doğmuştur. Gezegen ve uydu ile yıldızların gökküresindeki yerleri (koordinatları) ve hareketleri ile ilgili hesaplamalar; küresel üçgenin, küresel trigonometriye uygulanmasıyla elde edilebilmektedir. Dolayısıyla, o devir Türk-İslam Dünyası’nda, Trigonometri müstakil bir bilim haline gelmiş ve oldukça gelişmiştir.

          8. ile 16. yüzyıl Türk-İslam Dünyası matematik ve astronomi bilginlerinin hazırlamış oldukları “Ziyc” adlı eserin hepsinde, bugünkü trigonometrinin temel bilgileri, ilk olarak ortaya konulmuştur. Gene bu devir Türk-İslam Dünyası bilginleri, Batlamyos’un (Claidius ptolemeios 85-160) ünlü eseri, değişik tarihlerde değişik matematik ve astronomi bilginleri tarafından mıcıstı (al-magesti) adıyla şerh edilmiştir. Bu şerhlerde de, yer yer trigonometri bilgileri zenginleştirilip geliştirildi.

          Batı’da objektif olarak hazırlanmış, matematik tarihi ve astronomi tarihi ile ilgili eserlerde, bu hükümlerin açık olarak belirtildiğini görmek mümkündür.

Diferansiyel Denklemlerin Tarihi Gelişimi

Diferansiyel denklemler konusunda yapılan ilk çalışmalar, 17. yüzyılın ikinci yarısında, diferansiyel ve entegral hesabın keşfinden (ortaya çıkmasından) hemen sonra, İngiliz matematikçi Newton (1642-1727) ve Alman matematikçi Leibnitz (1641-1716) ile başlar. Daha sonraları, matematik tarihinde büyük isim yapmış olan, İsviçreli matematikçilerden Bernouilli kardeşlerin, 18. yüzyılda da, Euler, Clairaut, Lagrance, D Alembert. Charbit, Monge, Laplaca ile 19. yüzyılda da, Chrystal, Cauchy, Jacobi, Ampere, Darboux, Picart, Fusch ve F.G. Frobenius, diferansiyel denklemler teorisini, bugünkü ileri seviyeye getiren matematikçilerdir.

          Belli tip diferansiyel denklemlerin, belli şartlar altında bir çözümlerinin mevcut olmasının ispatı, diferansiyel denklemler teorisinde varlık teoremi konusunu teşkil etmekte olup, bu da, ilk olarak 1820 ile 1830 yılları arasında, Fransız matematikçi A.L. Cauchy tarafından tesis edilmiş ve daha sonra gelenler tarafından geliştirilmiştir.

          Şimdi konunun tarihsel gelişiminde önemli yeri olan bazı matematikçilerin, ortaya koydukları diferansiyel denklem tiplerinin genel halini belirtelim.

A) Newton ve Diferansiyel Denklem

          İngiliz matematikçi Newton (1642-1727), diferansiyel denklemler üzerindeki çalışmalarına 1665 yılında başlamıştır. 1671 yılında yayınladığı bir makale ile, diferansiyel denklemleri 3 ayrı sınıfta göstermiştir. Bunlar :

     i) Birinci Sınıf Diferansiyel Denklemler

          Bu sınıfa ayırdıkları, dy/dx tipinde olanlardır. Burada y, x’in bir fonksiyonudur veya bunun tersi de söz konusudur.

     ii) İkinci Sınıf Diferansiyel Denklemler

          Bu sınıfa ayırdıkları, (dy/dx) = f(x,y) tipinde olanlardır.

     iii) Üçüncü Sınıf Diferansiyel Denklemler

          Bu sınıftaki diferansiyel denklemler ise, kısmi diferansiyel tipinde olanlardır.

B ) Leibnitz ve Diferansiyel Denklem

          Alman filozof ve matematikçi Leibnitz (1646-1716), diferansiyel denklemler üzerine çalışmalarına 1673 yılında başlamıştır. Bu konudaki çalışmalarını, 1684 ile 1686 yılları arasında yazdığı Aklaerudilorum adında bir eseri ile ortaya koymuştur.

          Leibnitz’in bu eseri, yayınlandığı yıllarda Almanya’da gereken ilgiyi görmemiştir. Fakat, İsviçre’de, Jaques ve Jean Bernouilli kardeşler tarafından, ilgiyle incelenmiştir. 1690 yılında, Jaques Bernouilli bu konuda önemli bir eser yayınlanmıştır. Yine aynı yıllarda; Leibnitz ve Bernouilli kardeşler tarafından, diferansiyel üzerinde önemli araştırmalar yapmışlardır. Yeni çözüm yolları geliştirmişlerdir.

          Leibnitz 1691 yılında; f (x,y) = f (x.g (y)) şeklinde olan diferansiyel denklemin çözümünü yapmıştır.

C) Euler ve Diferansiyel Denklem

          Alman matematikçi Leonard Euler (1707-1783), 1728 yılında, diferansiyel denklemler üzerinde geniş çalışmalar yapmıştır. Diferansiyel denklemlerin derecesini düşürme yöntemlerini geliştirmiştir. Seri çözümleri ve:

(1-x4)-1/2dx + (1-y4)1/2dy = 0

          şeklinde olan Abel’in teoreminin cebirsel çözümünü bulmuştur. Bu çözüm, eliptik fonksiyonlarda önemli rol oynamıştır.

     Euler’in Denklemi

          ai ler sabit olmak üzere, denklemin genel şekli:

a0 xnyn + a1 xn-1yn-1 + … + an-1 xy + an = q(x)

          olan bu denklem, y ye ve türevlerine göre lineerdir, fakat katsayılar değişkendir.

Lineer Cebir’in Tarihsel Gelişimi

          Projektif transformasyonlar; koordinatların lineer transformasyonları ile ifade olunmuşlardır. Şu halde, projektif geometriyi kavrayabilmek için geliştirilmiş “Lineer Cebir’e” ihtiyaç vardır. Bu gelişmeyi, Analyse Algenukus 1815 isimli eserinde, Cauchy ve determinantlar teorisinde de Jacobi verdiler. Jacobi’nin tezi ile aynı zamanda, Cayley’in ilk defa olarak, determinantların bir kare şeması tarzında, yazılışında kullanılan ve büyük önem taşıyan bir tezi intişar etti.

          İngilizlerden; Cayley, Sylvester, Smith, Almanlardan; Weister Kronoker, Frobenus ve Fransızlardan Hermit’in beraber çalışmaları ile Lineer Cebir, yani matrislerle hesap yapma, Basit Bölenler Teorisi, Kuadratik formların transformasyonları gibi hesaplamalar, 1850 ile 1880 yılları arasında belirli bir seviyeye gelmişti. 

Pi Sayısı Hakkında

sembolü, Yunan alfabesinin 16. harfidir. Bu harf, aynı zamanda, Yunanca çevre (çember) anlamına gelen “perimetier” kelimesinin de ilk harfidir. İsviçreli matematikçi Leonard Euler, 1737 yılında yayınladığı eserinde, daire çevresinin çapına oranı söz konusu olduğunda, bu sembolü kullandı. Leonard Euler’den önce gelen bazı matematikçiler tarafından da, bu sembol kullanılmıştır. Ancak, Leonard Euler’den sonra gelen, tüm matematikçiler bu sembolü benimseyip kullandılar.

          Ayrıca, doğal logaritmanın tabanı olan 2, 71828… sayısı için, L. Euler’in kullandığı e harfi, sembol olarak bütün matematikçiler tarafından kullanılmaya başlanmış, benimsenmiştir. Gene, karekök içinde -1 imajineri için de, L. Euler ile birlikte i sembolü kullanılmaya başlanmış ve genelleşmiştir.

          İnsanoğlu; daire dediğimiz, kendine özgü düzgün yuvarlak şeklin farkına, tekerleğin icadından çok önceki tarihlerde varmıştır. Bu şekli, diğer insan ve hayvanların gözbebekleri ile gökyüzündeki Güneş ve Ayda görüyordu. Derken, elindeki sopa ile, kum gibi düzgün yüzeylere daire çizdi. Sonra düşündü; bazı daireler küçük, bazıları ise büyük. Görüyordu ki (sezinliyordu ki), dairenin bir ucundan öteki ucuna olan uzaklığı (çapı), büyürse, çevresi de o kadar büyüyordu. Sonra gene düşündü, cilalı taş devri insanı, artık soyutlamasını yapmıştı. Dairenin; çevresinin uzunluğu ile çapının uzunluğu orantılıydı. Çevrenin çapa oranı, daireden daireye değişmiyor, sabit kalıyordu. Demek ki; bugünkü gösterim şekliyle, bu sabit orana dersek; Çevre/Çap = sabit. Şeklinde yazılabiliyordu.

          Bu oranın sabitliği anlaşıldıktan sonra, sabit oran değerinin, sayı olarak belirlenmesi gerekiyordu.

Pi Sayısının Tarihsel Gelişimi

kaynaklar, sayısı için, gerçek değerin ilk kez Archimides (M.Ö. 287-212) tarafından kullanıldığını belirtir. Ancak, Archimides’ten önce, Eski Mısırlılar’da ve Mezopotamya Babil devrinde, Archimiden’den sonra da, 15. yüzyıl Türk-İslam Dünyasının ünlü matematikçisi Gıyasüddin Cemşid (?-Semerkant 1429 ?) tarafından, sayısı için yaklaşık bazı değerler kullanılmıştır.

Pi Sayısının İrrasyonelliği

Nasıl bir sayısı? Örneğin : m ve n birer tam sayı olmak üzere, nin değeri m/n şeklinde yazılabilir mi? yani nin değeri rasyonel bir sayı mıdır?

          Başlangıcta, matematikçiler bu yönde ümitliydiler. nin bu kadar çok ondalık kısmının hesaplanmasının nedenlerinden biri de, buydu herhalde. Matematikçiler bekliyorlardı ki, bir yerden sonra, basamaklar önceki değerlerini tekrar etsin, yani devirli bir ondalık sayı halinde yazılabilsin. Ama bu olmadı, Sonunda, 1761 yılında, İsviçre’li matematikçi Lambert, nin irrasyonel olduğunu, yani dairenin çevresi ile çapının bir ortak ölçüsü olmadığını ispatladı

Pi Sayısının Üstelliği

        

          sayısına ait değerin, gittikçe daha fazla basamağını hesaplama tutkusunun yanısıra, matematikçilerin rüyalarına giren başka bir problemi de, daireyi kare yapma problemiydi. Bu uğraşıya, kendilerini kaptıranların önderi Anaksagoras’tır (M.Ö. 500-428) Bir ara Atina’da, zındıklıkla suçlanıp hapse atılan Anaksagoras, burada can sıkıntısından, daireyi kare yapmanın yollarını aramaya başlar. Kendisinin çözdüğünü sandığı, bazı yaklaşık sonuçlar elde edler. Daha sonra, Kilyos’lu Hippokrates (M.Ö. 5. yüzyıllın ikinci yarısı) , aşağıdaki şekilde

taranmış ACBA alanının, AOB üçgenin alanına eşit olduğunu gösterir Buna benzer başka örnekler gösterir ki, belli eğrilerle sınırlanmış, bazı bölgelerin alanlarına eşit alanda kareler çizilebilir.

    18. yüzyılın sonlarından başlayarak, dairenin kare yapılmasının imkansız olduğu fikri, matematikçilere hakim oldu. Bu kuşku o kadar büyük ki, 1775 te, Paris Bilimler Akademisi, devr-i daim makinesi projeleri, açıyı pergel ve cetvel kullanarak üç eşit parçaya bölme yöntemlerinin yanısıra daireyi kare yapma yöntemlerini de, artık inceleme kararı aldı.

          1775 te Euler, 1794 te Legendra, nin belki de, cebirsel bir sayı olmadığına, üstel bir sayı olması gerektiğine ilişkin inançlarını belirtirler. Fakat nin üstel olduğunun kanıtlanması için, 100 yıl beklendi. Sonunda, 1882 yılında, Alman matematikçi Lindermann, nin üstel olduğunu ispatladı.

Pi Sayısının İlk 1000 Basamağı

Aşağıda sayısının ilk 1000 basamağı verilmiştir. Sonsuza uzanan bu yolculuktaki çok çok ufak sayılabilecek bu 1000 basamak bile sayısının muhteşem güzelliğini gözler önüne sermeye yetmiyor mu, ne dersiniz?

3,14159265358979323846264338327950288419716939937510 58209749445923078164062862089986280348253421170679 82148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196 44288109756659334461284756482337867831652712019091 45648566923460348610454326648213393607260249141273 72458700660631558817488152092096282925409171536436 78925903600113305305488204665213841469519415116094 33057270365759591953092186117381932611793105118548 07446237996274956735188575272489122793818301194912 98336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872 14684409012249534301465495853710507922796892589235 42019956112129021960864034418159813629774771309960 51870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881 71010003137838752886587533208381420617177669147303 59825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989…

Pi Sayısının Kronolojik Gelişimi

M.Ö. 2000 : Eski Mısırlılar = (16/9)2 = 3.1605 değerini kullanıyorlar.

M.Ö. 2000 : Mezopotamyalılar Babil devrinde = değerini kullanıyorlar.

M.Ö. 1200 : Çinliler = 3 değerini kullanıyorlar.

M.Ö. 550 : Kutsal Kitapta (I. Krallar 7 : 23) , = 3 anlamına geliyor.

M.Ô. 434 : Anaksagoras daireyi kare yapmaya girişir.

M.Ô. 300 : Yılları, Archimides < <   olduğunu buluyor. Bundan başka yaklaşık olarak =211875/67441 kesrini de buluyor.

M.S. 200 : Yıllarında, Batlamyos = (377/120) = 3.14166 değerini kullanıyor.

M.S. 300 : Yılları, Çüng Hing = = 3.166 değerini kullanıyor.

M.S. 300 : Yılları, Vang Fau = (142/45) = 3.155 değerini kullanıyor.

M.S. 300 : Yılları, Liu Hui = (471/150) = 3.14 değerini kullanıyor.

M.S. 500 : Yılları, Zu Çung-Çi 3.1415926< < 3.1415927 olduğunu buluyor.

M.S. 600 : Yılları Hintli Aryabhatta = (62832/2000) = 3.1416 değerini kullanıyor.

M.S. 620 : Hintli Brahmagupta = (m/10) değerini kullanıyor. Bazı kaynaklarda da Brahmagupta’nın için değerini kullandığı belirtilir.

M.S. 1200 : İtalyan Fibonacci = 3.141818 

M.S. 1436 : Semankant Türkü Giyasüddin Cemşid el Kaşi, ‘yi 14 basamağa kadar elde ediyor. Bu değer bugünkü kabul

edilen değere göre doğrudur.

M.S. 1573 : Valentinus Otho = (355/113) = 3.1415929 olduğunu buluyor.

M.S. 1593 : Hollanda’lı Adriaen van Rooman ‘yi 15 basamağa kadar hesaplıyor.

M.S. 1596 : Hollandalı Lodolph ve Cevlen ‘yi 35 basamağa kadar hesaplıyor. (Bu nedenle Almanya’da sayısı, Lodolph sayısı diye de bilinir.)

M.S. 1705 : Abraham Sharp yi 72 basamağa kadar hesaplıyor.

M.S. 1706 : John Machin yi 100 basamağa kadar hesaplıyor.

M.S. 1719 : Fransız De Lagny yi 127 basamağa kadar hesaplıyor.

M.S. 1737 : Leonard Euler’in benimsemesiyle sembolü evrensellik kazanıyor.

M.S. 1761 : lsviçreli Johaun Heinrich Lambert nin irrasyonelliğini kanıtlıyor.

M.S. 1775 : İsviçre’li matematikçi, L. Euler nin üstel olabileceğine işaret ediyor.

M.S. 1794 : Fransız Adrien-Marie Legendre nin ve 2 nin irrasyonelliğini kanıtlıyor.

M.S. 1794 : Vega yi 140 basamağa kadar hesaplıyor.

M.S. 1844 : Avusturyalı Schulz von Strassnigtzky yi 200 basamağa kadar hesaplıyor.

M.S. 1855 : Richter yi 500 basamağa kadar hesaplıyor.

M.S. 1874 : lngiliz W. Shanks yi 707 basamağa kadar hesaplıyor.

M.S. 1882 : Alman Ferdinan Lindemann nin üstel bir sayı olduğunu kanıtlıyor.

M.S. 1947 : İlk bilgisayar ENİAC yi 2035 basamağa kadar hesaplıyor.

M.S. 1958 : F. Genuys tarafından, Chiffers I de yayınlanan makalede, sayısının değeri 10.000 nci ondalık basamağa

kadar hesaplanmıştır

Sıfır Rakamı Hakkında

Onluk sistemin bir üstünlüğü, sıfır rakamı için ayrı bir işaretin (sembolün) bulunmasıdır. Sıfır işaretinin, gerektiğinde basamaklara (hanelere) yazılması gerekmektedir. Aksi halde, boş bırakılan basamak (hane) birçok yanlış anlaşılmalara sebep olur. Örneğin : Bugün, rakamla 407 şeklinde yazdığımız, dört yüz yedi sayısını, sıfır işareti kullanmadan, 4.7 veya 4 7 (4 ve 7 nin arası biraz boş bırakılarak) şeklinde göstermek mümkünse de, anlam bakımından birçok karşılıklara sebep olabilir.

          Sıfır kavramını (fikrini) ilk olarak, hangi medeniyet içerisinde ve kim tarafından ortaya konulmuş (kullanılmış) olduğunda, kaynaklar hemfikir değildi. Bununla beraber, Eski Hintliler’de, milattan sonra 632 yılından itibaren sıfır için özel bir işaretin kullanılmış olduğunu, zamanımıza kadar intikal eden belgeler göstermektedir.

          Eski Hintlilerden kalma kitabelerde (yazıtlarda) görülen, rakam ve işaretler, günümüzde “Hint-Arap sistemi” olarak adlandırılan sisteme göre benzerlik olduğunu, ve nümerik (terkiym) sistemin, o devirde kullanıldığını göstermektedir. Daha sonraki yıllara ait kitabeler, sayılarda, rakamın kendi zat’i değeriyle vaz’i (konum) değeri, (yani sayı içindeki anlam değeri) arasındaki bağıntının bilindiğini, sıfır anlamını veren, “0″ gibi bir işaret kullanıldığını da göstermektedir.

          Sıfır için, ayrı bir özel işaretin bulunuşu ve basamak fikrinin ustaca kullanılışı, onluk sistemi (decimal), sadece matematiğin değil, ilim dünyasının, en elverişli sistemlerinden biri yapmıştır. Onluk sistemin bu hali için, Fransız matematikçi Pierre Siman Laplace (1749-1827), bu konuda “Dünyanın en faydalı sistemlerinden biridir.” demektedir.

Sıfır Rakamının Kronolojik Gelişimi

M.Ö. 3000 yılları : Eski Mısırlılar, onluk sistemi bilmediklerinden, sıfır anlamını ifade eden bir sembol (işaret) kullanmamışlardır.

M.Ö. 700-500 yılları : Mezopotamyalılar, sadece astronomi metinlerinde, sıfır anlamına gelecek, özel bir işareti sürekli olarak kullanmışlardır.

M.S. 2. yüzyıl : Eski Yunan’da, Batlamyos’un astronomi metinlerinde, Yunan alfabesinde görülen, içi boş anlamını ifade eden “0″ şeklinde bir harf kullanmışlardır. Ancak, matematiklerinde, bu harfi (işareti) kullanmadıklarını, kaynaklar açık olarak belirtmektedir.

M.S. 400 yılları : Eski Hint Dünyasında, ilk defa, bugünkü ifadeyle sıfır anlamına gelen, “0″ ve “.” şeklinde işaret (sembol) görülmeye başlamıştır.

M.S. 632 : Eski Hint alimi Brahmagupta’nın astronomi ile ilgili olan Siddhanta adlı eserinde, dokuz ayrı ve sıfır rakamı ile hesap yapmayı gösteren kaideler belirtilmiştir.

M.S. 830 : İslam Dünyasının önde gelen matematik alimi Harezmi tarafından, dokuz ayrı rakam dahil sıfır rakamı ile birlikte aritmetik işlemlerin nasıl yapılacağı açık olarak gösterilmiştir.

M.S. 1100 yılları : Avrupa matematik dünyasında, yaygın olarak kullanılmaya başlar.

Kategori: Bilim


Rasgele...


Destekliyoruz arkada - arkadas - partner - partner - arkada - proxy - yemek tarifi - powermta - powermta administrator - Proxy